Metamath Proof Explorer


Theorem rexnal3

Description: Relationship between three restricted universal and existential quantifiers. (Contributed by Thierry Arnoux, 12-Jul-2020)

Ref Expression
Assertion rexnal3 ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 ¬ 𝜑 ↔ ¬ ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 )

Proof

Step Hyp Ref Expression
1 rexnal ( ∃ 𝑧𝐶 ¬ 𝜑 ↔ ¬ ∀ 𝑧𝐶 𝜑 )
2 1 2rexbii ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 ¬ 𝜑 ↔ ∃ 𝑥𝐴𝑦𝐵 ¬ ∀ 𝑧𝐶 𝜑 )
3 rexnal2 ( ∃ 𝑥𝐴𝑦𝐵 ¬ ∀ 𝑧𝐶 𝜑 ↔ ¬ ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 )
4 2 3 bitri ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 ¬ 𝜑 ↔ ¬ ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 )