Description: Relationship between three restricted universal and existential quantifiers. (Contributed by Thierry Arnoux, 12-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | rexnal3 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexnal | ⊢ ( ∃ 𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ¬ ∀ 𝑧 ∈ 𝐶 𝜑 ) | |
2 | 1 | 2rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ¬ ∀ 𝑧 ∈ 𝐶 𝜑 ) |
3 | rexnal2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ¬ ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ) | |
4 | 2 3 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ) |