Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen |
⊢ ℝ ≈ 𝒫 ℕ |
2 |
|
nnenom |
⊢ ℕ ≈ ω |
3 |
|
pwen |
⊢ ( ℕ ≈ ω → 𝒫 ℕ ≈ 𝒫 ω ) |
4 |
2 3
|
ax-mp |
⊢ 𝒫 ℕ ≈ 𝒫 ω |
5 |
1 4
|
entri |
⊢ ℝ ≈ 𝒫 ω |
6 |
|
omex |
⊢ ω ∈ V |
7 |
6
|
pw2en |
⊢ 𝒫 ω ≈ ( 2o ↑m ω ) |
8 |
5 7
|
entri |
⊢ ℝ ≈ ( 2o ↑m ω ) |
9 |
|
xpen |
⊢ ( ( ℝ ≈ ( 2o ↑m ω ) ∧ ℝ ≈ ( 2o ↑m ω ) ) → ( ℝ × ℝ ) ≈ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ) |
10 |
8 8 9
|
mp2an |
⊢ ( ℝ × ℝ ) ≈ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) |
11 |
|
2onn |
⊢ 2o ∈ ω |
12 |
11
|
elexi |
⊢ 2o ∈ V |
13 |
12 12 6
|
xpmapen |
⊢ ( ( 2o × 2o ) ↑m ω ) ≈ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) |
14 |
13
|
ensymi |
⊢ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ≈ ( ( 2o × 2o ) ↑m ω ) |
15 |
|
ssid |
⊢ 2o ⊆ 2o |
16 |
|
ssnnfi |
⊢ ( ( 2o ∈ ω ∧ 2o ⊆ 2o ) → 2o ∈ Fin ) |
17 |
11 15 16
|
mp2an |
⊢ 2o ∈ Fin |
18 |
|
xpfi |
⊢ ( ( 2o ∈ Fin ∧ 2o ∈ Fin ) → ( 2o × 2o ) ∈ Fin ) |
19 |
17 17 18
|
mp2an |
⊢ ( 2o × 2o ) ∈ Fin |
20 |
|
isfinite |
⊢ ( ( 2o × 2o ) ∈ Fin ↔ ( 2o × 2o ) ≺ ω ) |
21 |
19 20
|
mpbi |
⊢ ( 2o × 2o ) ≺ ω |
22 |
6
|
canth2 |
⊢ ω ≺ 𝒫 ω |
23 |
|
sdomtr |
⊢ ( ( ( 2o × 2o ) ≺ ω ∧ ω ≺ 𝒫 ω ) → ( 2o × 2o ) ≺ 𝒫 ω ) |
24 |
21 22 23
|
mp2an |
⊢ ( 2o × 2o ) ≺ 𝒫 ω |
25 |
|
sdomdom |
⊢ ( ( 2o × 2o ) ≺ 𝒫 ω → ( 2o × 2o ) ≼ 𝒫 ω ) |
26 |
24 25
|
ax-mp |
⊢ ( 2o × 2o ) ≼ 𝒫 ω |
27 |
|
domentr |
⊢ ( ( ( 2o × 2o ) ≼ 𝒫 ω ∧ 𝒫 ω ≈ ( 2o ↑m ω ) ) → ( 2o × 2o ) ≼ ( 2o ↑m ω ) ) |
28 |
26 7 27
|
mp2an |
⊢ ( 2o × 2o ) ≼ ( 2o ↑m ω ) |
29 |
|
mapdom1 |
⊢ ( ( 2o × 2o ) ≼ ( 2o ↑m ω ) → ( ( 2o × 2o ) ↑m ω ) ≼ ( ( 2o ↑m ω ) ↑m ω ) ) |
30 |
28 29
|
ax-mp |
⊢ ( ( 2o × 2o ) ↑m ω ) ≼ ( ( 2o ↑m ω ) ↑m ω ) |
31 |
|
mapxpen |
⊢ ( ( 2o ∈ ω ∧ ω ∈ V ∧ ω ∈ V ) → ( ( 2o ↑m ω ) ↑m ω ) ≈ ( 2o ↑m ( ω × ω ) ) ) |
32 |
11 6 6 31
|
mp3an |
⊢ ( ( 2o ↑m ω ) ↑m ω ) ≈ ( 2o ↑m ( ω × ω ) ) |
33 |
12
|
enref |
⊢ 2o ≈ 2o |
34 |
|
xpomen |
⊢ ( ω × ω ) ≈ ω |
35 |
|
mapen |
⊢ ( ( 2o ≈ 2o ∧ ( ω × ω ) ≈ ω ) → ( 2o ↑m ( ω × ω ) ) ≈ ( 2o ↑m ω ) ) |
36 |
33 34 35
|
mp2an |
⊢ ( 2o ↑m ( ω × ω ) ) ≈ ( 2o ↑m ω ) |
37 |
32 36
|
entri |
⊢ ( ( 2o ↑m ω ) ↑m ω ) ≈ ( 2o ↑m ω ) |
38 |
|
domentr |
⊢ ( ( ( ( 2o × 2o ) ↑m ω ) ≼ ( ( 2o ↑m ω ) ↑m ω ) ∧ ( ( 2o ↑m ω ) ↑m ω ) ≈ ( 2o ↑m ω ) ) → ( ( 2o × 2o ) ↑m ω ) ≼ ( 2o ↑m ω ) ) |
39 |
30 37 38
|
mp2an |
⊢ ( ( 2o × 2o ) ↑m ω ) ≼ ( 2o ↑m ω ) |
40 |
|
endomtr |
⊢ ( ( ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ≈ ( ( 2o × 2o ) ↑m ω ) ∧ ( ( 2o × 2o ) ↑m ω ) ≼ ( 2o ↑m ω ) ) → ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ≼ ( 2o ↑m ω ) ) |
41 |
14 39 40
|
mp2an |
⊢ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ≼ ( 2o ↑m ω ) |
42 |
|
ovex |
⊢ ( 2o ↑m ω ) ∈ V |
43 |
|
0ex |
⊢ ∅ ∈ V |
44 |
42 43
|
xpsnen |
⊢ ( ( 2o ↑m ω ) × { ∅ } ) ≈ ( 2o ↑m ω ) |
45 |
44
|
ensymi |
⊢ ( 2o ↑m ω ) ≈ ( ( 2o ↑m ω ) × { ∅ } ) |
46 |
|
snfi |
⊢ { ∅ } ∈ Fin |
47 |
|
isfinite |
⊢ ( { ∅ } ∈ Fin ↔ { ∅ } ≺ ω ) |
48 |
46 47
|
mpbi |
⊢ { ∅ } ≺ ω |
49 |
|
sdomtr |
⊢ ( ( { ∅ } ≺ ω ∧ ω ≺ 𝒫 ω ) → { ∅ } ≺ 𝒫 ω ) |
50 |
48 22 49
|
mp2an |
⊢ { ∅ } ≺ 𝒫 ω |
51 |
|
sdomdom |
⊢ ( { ∅ } ≺ 𝒫 ω → { ∅ } ≼ 𝒫 ω ) |
52 |
50 51
|
ax-mp |
⊢ { ∅ } ≼ 𝒫 ω |
53 |
|
domentr |
⊢ ( ( { ∅ } ≼ 𝒫 ω ∧ 𝒫 ω ≈ ( 2o ↑m ω ) ) → { ∅ } ≼ ( 2o ↑m ω ) ) |
54 |
52 7 53
|
mp2an |
⊢ { ∅ } ≼ ( 2o ↑m ω ) |
55 |
42
|
xpdom2 |
⊢ ( { ∅ } ≼ ( 2o ↑m ω ) → ( ( 2o ↑m ω ) × { ∅ } ) ≼ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ) |
56 |
54 55
|
ax-mp |
⊢ ( ( 2o ↑m ω ) × { ∅ } ) ≼ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) |
57 |
|
endomtr |
⊢ ( ( ( 2o ↑m ω ) ≈ ( ( 2o ↑m ω ) × { ∅ } ) ∧ ( ( 2o ↑m ω ) × { ∅ } ) ≼ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ) → ( 2o ↑m ω ) ≼ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ) |
58 |
45 56 57
|
mp2an |
⊢ ( 2o ↑m ω ) ≼ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) |
59 |
|
sbth |
⊢ ( ( ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ≼ ( 2o ↑m ω ) ∧ ( 2o ↑m ω ) ≼ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ) → ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ≈ ( 2o ↑m ω ) ) |
60 |
41 58 59
|
mp2an |
⊢ ( ( 2o ↑m ω ) × ( 2o ↑m ω ) ) ≈ ( 2o ↑m ω ) |
61 |
10 60
|
entri |
⊢ ( ℝ × ℝ ) ≈ ( 2o ↑m ω ) |
62 |
61 8
|
entr4i |
⊢ ( ℝ × ℝ ) ≈ ℝ |