| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpnnen | ⊢ ℝ  ≈  𝒫  ℕ | 
						
							| 2 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 3 |  | pwen | ⊢ ( ℕ  ≈  ω  →  𝒫  ℕ  ≈  𝒫  ω ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ 𝒫  ℕ  ≈  𝒫  ω | 
						
							| 5 | 1 4 | entri | ⊢ ℝ  ≈  𝒫  ω | 
						
							| 6 |  | omex | ⊢ ω  ∈  V | 
						
							| 7 | 6 | pw2en | ⊢ 𝒫  ω  ≈  ( 2o  ↑m  ω ) | 
						
							| 8 | 5 7 | entri | ⊢ ℝ  ≈  ( 2o  ↑m  ω ) | 
						
							| 9 |  | xpen | ⊢ ( ( ℝ  ≈  ( 2o  ↑m  ω )  ∧  ℝ  ≈  ( 2o  ↑m  ω ) )  →  ( ℝ  ×  ℝ )  ≈  ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) ) ) | 
						
							| 10 | 8 8 9 | mp2an | ⊢ ( ℝ  ×  ℝ )  ≈  ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) ) | 
						
							| 11 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 12 | 11 | elexi | ⊢ 2o  ∈  V | 
						
							| 13 | 12 12 6 | xpmapen | ⊢ ( ( 2o  ×  2o )  ↑m  ω )  ≈  ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) ) | 
						
							| 14 | 13 | ensymi | ⊢ ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) )  ≈  ( ( 2o  ×  2o )  ↑m  ω ) | 
						
							| 15 |  | ssid | ⊢ 2o  ⊆  2o | 
						
							| 16 |  | ssnnfi | ⊢ ( ( 2o  ∈  ω  ∧  2o  ⊆  2o )  →  2o  ∈  Fin ) | 
						
							| 17 | 11 15 16 | mp2an | ⊢ 2o  ∈  Fin | 
						
							| 18 |  | xpfi | ⊢ ( ( 2o  ∈  Fin  ∧  2o  ∈  Fin )  →  ( 2o  ×  2o )  ∈  Fin ) | 
						
							| 19 | 17 17 18 | mp2an | ⊢ ( 2o  ×  2o )  ∈  Fin | 
						
							| 20 |  | isfinite | ⊢ ( ( 2o  ×  2o )  ∈  Fin  ↔  ( 2o  ×  2o )  ≺  ω ) | 
						
							| 21 | 19 20 | mpbi | ⊢ ( 2o  ×  2o )  ≺  ω | 
						
							| 22 | 6 | canth2 | ⊢ ω  ≺  𝒫  ω | 
						
							| 23 |  | sdomtr | ⊢ ( ( ( 2o  ×  2o )  ≺  ω  ∧  ω  ≺  𝒫  ω )  →  ( 2o  ×  2o )  ≺  𝒫  ω ) | 
						
							| 24 | 21 22 23 | mp2an | ⊢ ( 2o  ×  2o )  ≺  𝒫  ω | 
						
							| 25 |  | sdomdom | ⊢ ( ( 2o  ×  2o )  ≺  𝒫  ω  →  ( 2o  ×  2o )  ≼  𝒫  ω ) | 
						
							| 26 | 24 25 | ax-mp | ⊢ ( 2o  ×  2o )  ≼  𝒫  ω | 
						
							| 27 |  | domentr | ⊢ ( ( ( 2o  ×  2o )  ≼  𝒫  ω  ∧  𝒫  ω  ≈  ( 2o  ↑m  ω ) )  →  ( 2o  ×  2o )  ≼  ( 2o  ↑m  ω ) ) | 
						
							| 28 | 26 7 27 | mp2an | ⊢ ( 2o  ×  2o )  ≼  ( 2o  ↑m  ω ) | 
						
							| 29 |  | mapdom1 | ⊢ ( ( 2o  ×  2o )  ≼  ( 2o  ↑m  ω )  →  ( ( 2o  ×  2o )  ↑m  ω )  ≼  ( ( 2o  ↑m  ω )  ↑m  ω ) ) | 
						
							| 30 | 28 29 | ax-mp | ⊢ ( ( 2o  ×  2o )  ↑m  ω )  ≼  ( ( 2o  ↑m  ω )  ↑m  ω ) | 
						
							| 31 |  | mapxpen | ⊢ ( ( 2o  ∈  ω  ∧  ω  ∈  V  ∧  ω  ∈  V )  →  ( ( 2o  ↑m  ω )  ↑m  ω )  ≈  ( 2o  ↑m  ( ω  ×  ω ) ) ) | 
						
							| 32 | 11 6 6 31 | mp3an | ⊢ ( ( 2o  ↑m  ω )  ↑m  ω )  ≈  ( 2o  ↑m  ( ω  ×  ω ) ) | 
						
							| 33 | 12 | enref | ⊢ 2o  ≈  2o | 
						
							| 34 |  | xpomen | ⊢ ( ω  ×  ω )  ≈  ω | 
						
							| 35 |  | mapen | ⊢ ( ( 2o  ≈  2o  ∧  ( ω  ×  ω )  ≈  ω )  →  ( 2o  ↑m  ( ω  ×  ω ) )  ≈  ( 2o  ↑m  ω ) ) | 
						
							| 36 | 33 34 35 | mp2an | ⊢ ( 2o  ↑m  ( ω  ×  ω ) )  ≈  ( 2o  ↑m  ω ) | 
						
							| 37 | 32 36 | entri | ⊢ ( ( 2o  ↑m  ω )  ↑m  ω )  ≈  ( 2o  ↑m  ω ) | 
						
							| 38 |  | domentr | ⊢ ( ( ( ( 2o  ×  2o )  ↑m  ω )  ≼  ( ( 2o  ↑m  ω )  ↑m  ω )  ∧  ( ( 2o  ↑m  ω )  ↑m  ω )  ≈  ( 2o  ↑m  ω ) )  →  ( ( 2o  ×  2o )  ↑m  ω )  ≼  ( 2o  ↑m  ω ) ) | 
						
							| 39 | 30 37 38 | mp2an | ⊢ ( ( 2o  ×  2o )  ↑m  ω )  ≼  ( 2o  ↑m  ω ) | 
						
							| 40 |  | endomtr | ⊢ ( ( ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) )  ≈  ( ( 2o  ×  2o )  ↑m  ω )  ∧  ( ( 2o  ×  2o )  ↑m  ω )  ≼  ( 2o  ↑m  ω ) )  →  ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) )  ≼  ( 2o  ↑m  ω ) ) | 
						
							| 41 | 14 39 40 | mp2an | ⊢ ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) )  ≼  ( 2o  ↑m  ω ) | 
						
							| 42 |  | ovex | ⊢ ( 2o  ↑m  ω )  ∈  V | 
						
							| 43 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 44 | 42 43 | xpsnen | ⊢ ( ( 2o  ↑m  ω )  ×  { ∅ } )  ≈  ( 2o  ↑m  ω ) | 
						
							| 45 | 44 | ensymi | ⊢ ( 2o  ↑m  ω )  ≈  ( ( 2o  ↑m  ω )  ×  { ∅ } ) | 
						
							| 46 |  | snfi | ⊢ { ∅ }  ∈  Fin | 
						
							| 47 |  | isfinite | ⊢ ( { ∅ }  ∈  Fin  ↔  { ∅ }  ≺  ω ) | 
						
							| 48 | 46 47 | mpbi | ⊢ { ∅ }  ≺  ω | 
						
							| 49 |  | sdomtr | ⊢ ( ( { ∅ }  ≺  ω  ∧  ω  ≺  𝒫  ω )  →  { ∅ }  ≺  𝒫  ω ) | 
						
							| 50 | 48 22 49 | mp2an | ⊢ { ∅ }  ≺  𝒫  ω | 
						
							| 51 |  | sdomdom | ⊢ ( { ∅ }  ≺  𝒫  ω  →  { ∅ }  ≼  𝒫  ω ) | 
						
							| 52 | 50 51 | ax-mp | ⊢ { ∅ }  ≼  𝒫  ω | 
						
							| 53 |  | domentr | ⊢ ( ( { ∅ }  ≼  𝒫  ω  ∧  𝒫  ω  ≈  ( 2o  ↑m  ω ) )  →  { ∅ }  ≼  ( 2o  ↑m  ω ) ) | 
						
							| 54 | 52 7 53 | mp2an | ⊢ { ∅ }  ≼  ( 2o  ↑m  ω ) | 
						
							| 55 | 42 | xpdom2 | ⊢ ( { ∅ }  ≼  ( 2o  ↑m  ω )  →  ( ( 2o  ↑m  ω )  ×  { ∅ } )  ≼  ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) ) ) | 
						
							| 56 | 54 55 | ax-mp | ⊢ ( ( 2o  ↑m  ω )  ×  { ∅ } )  ≼  ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) ) | 
						
							| 57 |  | endomtr | ⊢ ( ( ( 2o  ↑m  ω )  ≈  ( ( 2o  ↑m  ω )  ×  { ∅ } )  ∧  ( ( 2o  ↑m  ω )  ×  { ∅ } )  ≼  ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) ) )  →  ( 2o  ↑m  ω )  ≼  ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) ) ) | 
						
							| 58 | 45 56 57 | mp2an | ⊢ ( 2o  ↑m  ω )  ≼  ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) ) | 
						
							| 59 |  | sbth | ⊢ ( ( ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) )  ≼  ( 2o  ↑m  ω )  ∧  ( 2o  ↑m  ω )  ≼  ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) ) )  →  ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) )  ≈  ( 2o  ↑m  ω ) ) | 
						
							| 60 | 41 58 59 | mp2an | ⊢ ( ( 2o  ↑m  ω )  ×  ( 2o  ↑m  ω ) )  ≈  ( 2o  ↑m  ω ) | 
						
							| 61 | 10 60 | entri | ⊢ ( ℝ  ×  ℝ )  ≈  ( 2o  ↑m  ω ) | 
						
							| 62 | 61 8 | entr4i | ⊢ ( ℝ  ×  ℝ )  ≈  ℝ |