Metamath Proof Explorer


Theorem rexpen

Description: The real numbers are equinumerous to their own Cartesian product, even though it is not necessarily true that RR is well-orderable (so we cannot use infxpidm2 directly). (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-Jun-2013)

Ref Expression
Assertion rexpen ( ℝ × ℝ ) ≈ ℝ

Proof

Step Hyp Ref Expression
1 rpnnen ℝ ≈ 𝒫 ℕ
2 nnenom ℕ ≈ ω
3 pwen ( ℕ ≈ ω → 𝒫 ℕ ≈ 𝒫 ω )
4 2 3 ax-mp 𝒫 ℕ ≈ 𝒫 ω
5 1 4 entri ℝ ≈ 𝒫 ω
6 omex ω ∈ V
7 6 pw2en 𝒫 ω ≈ ( 2om ω )
8 5 7 entri ℝ ≈ ( 2om ω )
9 xpen ( ( ℝ ≈ ( 2om ω ) ∧ ℝ ≈ ( 2om ω ) ) → ( ℝ × ℝ ) ≈ ( ( 2om ω ) × ( 2om ω ) ) )
10 8 8 9 mp2an ( ℝ × ℝ ) ≈ ( ( 2om ω ) × ( 2om ω ) )
11 2onn 2o ∈ ω
12 11 elexi 2o ∈ V
13 12 12 6 xpmapen ( ( 2o × 2o ) ↑m ω ) ≈ ( ( 2om ω ) × ( 2om ω ) )
14 13 ensymi ( ( 2om ω ) × ( 2om ω ) ) ≈ ( ( 2o × 2o ) ↑m ω )
15 ssid 2o ⊆ 2o
16 ssnnfi ( ( 2o ∈ ω ∧ 2o ⊆ 2o ) → 2o ∈ Fin )
17 11 15 16 mp2an 2o ∈ Fin
18 xpfi ( ( 2o ∈ Fin ∧ 2o ∈ Fin ) → ( 2o × 2o ) ∈ Fin )
19 17 17 18 mp2an ( 2o × 2o ) ∈ Fin
20 isfinite ( ( 2o × 2o ) ∈ Fin ↔ ( 2o × 2o ) ≺ ω )
21 19 20 mpbi ( 2o × 2o ) ≺ ω
22 6 canth2 ω ≺ 𝒫 ω
23 sdomtr ( ( ( 2o × 2o ) ≺ ω ∧ ω ≺ 𝒫 ω ) → ( 2o × 2o ) ≺ 𝒫 ω )
24 21 22 23 mp2an ( 2o × 2o ) ≺ 𝒫 ω
25 sdomdom ( ( 2o × 2o ) ≺ 𝒫 ω → ( 2o × 2o ) ≼ 𝒫 ω )
26 24 25 ax-mp ( 2o × 2o ) ≼ 𝒫 ω
27 domentr ( ( ( 2o × 2o ) ≼ 𝒫 ω ∧ 𝒫 ω ≈ ( 2om ω ) ) → ( 2o × 2o ) ≼ ( 2om ω ) )
28 26 7 27 mp2an ( 2o × 2o ) ≼ ( 2om ω )
29 mapdom1 ( ( 2o × 2o ) ≼ ( 2om ω ) → ( ( 2o × 2o ) ↑m ω ) ≼ ( ( 2om ω ) ↑m ω ) )
30 28 29 ax-mp ( ( 2o × 2o ) ↑m ω ) ≼ ( ( 2om ω ) ↑m ω )
31 mapxpen ( ( 2o ∈ ω ∧ ω ∈ V ∧ ω ∈ V ) → ( ( 2om ω ) ↑m ω ) ≈ ( 2om ( ω × ω ) ) )
32 11 6 6 31 mp3an ( ( 2om ω ) ↑m ω ) ≈ ( 2om ( ω × ω ) )
33 12 enref 2o ≈ 2o
34 xpomen ( ω × ω ) ≈ ω
35 mapen ( ( 2o ≈ 2o ∧ ( ω × ω ) ≈ ω ) → ( 2om ( ω × ω ) ) ≈ ( 2om ω ) )
36 33 34 35 mp2an ( 2om ( ω × ω ) ) ≈ ( 2om ω )
37 32 36 entri ( ( 2om ω ) ↑m ω ) ≈ ( 2om ω )
38 domentr ( ( ( ( 2o × 2o ) ↑m ω ) ≼ ( ( 2om ω ) ↑m ω ) ∧ ( ( 2om ω ) ↑m ω ) ≈ ( 2om ω ) ) → ( ( 2o × 2o ) ↑m ω ) ≼ ( 2om ω ) )
39 30 37 38 mp2an ( ( 2o × 2o ) ↑m ω ) ≼ ( 2om ω )
40 endomtr ( ( ( ( 2om ω ) × ( 2om ω ) ) ≈ ( ( 2o × 2o ) ↑m ω ) ∧ ( ( 2o × 2o ) ↑m ω ) ≼ ( 2om ω ) ) → ( ( 2om ω ) × ( 2om ω ) ) ≼ ( 2om ω ) )
41 14 39 40 mp2an ( ( 2om ω ) × ( 2om ω ) ) ≼ ( 2om ω )
42 ovex ( 2om ω ) ∈ V
43 0ex ∅ ∈ V
44 42 43 xpsnen ( ( 2om ω ) × { ∅ } ) ≈ ( 2om ω )
45 44 ensymi ( 2om ω ) ≈ ( ( 2om ω ) × { ∅ } )
46 snfi { ∅ } ∈ Fin
47 isfinite ( { ∅ } ∈ Fin ↔ { ∅ } ≺ ω )
48 46 47 mpbi { ∅ } ≺ ω
49 sdomtr ( ( { ∅ } ≺ ω ∧ ω ≺ 𝒫 ω ) → { ∅ } ≺ 𝒫 ω )
50 48 22 49 mp2an { ∅ } ≺ 𝒫 ω
51 sdomdom ( { ∅ } ≺ 𝒫 ω → { ∅ } ≼ 𝒫 ω )
52 50 51 ax-mp { ∅ } ≼ 𝒫 ω
53 domentr ( ( { ∅ } ≼ 𝒫 ω ∧ 𝒫 ω ≈ ( 2om ω ) ) → { ∅ } ≼ ( 2om ω ) )
54 52 7 53 mp2an { ∅ } ≼ ( 2om ω )
55 42 xpdom2 ( { ∅ } ≼ ( 2om ω ) → ( ( 2om ω ) × { ∅ } ) ≼ ( ( 2om ω ) × ( 2om ω ) ) )
56 54 55 ax-mp ( ( 2om ω ) × { ∅ } ) ≼ ( ( 2om ω ) × ( 2om ω ) )
57 endomtr ( ( ( 2om ω ) ≈ ( ( 2om ω ) × { ∅ } ) ∧ ( ( 2om ω ) × { ∅ } ) ≼ ( ( 2om ω ) × ( 2om ω ) ) ) → ( 2om ω ) ≼ ( ( 2om ω ) × ( 2om ω ) ) )
58 45 56 57 mp2an ( 2om ω ) ≼ ( ( 2om ω ) × ( 2om ω ) )
59 sbth ( ( ( ( 2om ω ) × ( 2om ω ) ) ≼ ( 2om ω ) ∧ ( 2om ω ) ≼ ( ( 2om ω ) × ( 2om ω ) ) ) → ( ( 2om ω ) × ( 2om ω ) ) ≈ ( 2om ω ) )
60 41 58 59 mp2an ( ( 2om ω ) × ( 2om ω ) ) ≈ ( 2om ω )
61 10 60 entri ( ℝ × ℝ ) ≈ ( 2om ω )
62 61 8 entr4i ( ℝ × ℝ ) ≈ ℝ