Step |
Hyp |
Ref |
Expression |
1 |
|
ralprg.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
ralprg.2 |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
1
|
notbid |
⊢ ( 𝑥 = 𝐴 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
4 |
2
|
notbid |
⊢ ( 𝑥 = 𝐵 → ( ¬ 𝜑 ↔ ¬ 𝜒 ) ) |
5 |
3 4
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ¬ 𝜑 ↔ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) |
6 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ¬ 𝜑 ↔ ¬ ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ) |
7 |
|
pm4.56 |
⊢ ( ( ¬ 𝜓 ∧ ¬ 𝜒 ) ↔ ¬ ( 𝜓 ∨ 𝜒 ) ) |
8 |
6 7
|
bibi12i |
⊢ ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ¬ 𝜑 ↔ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ↔ ( ¬ ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ¬ ( 𝜓 ∨ 𝜒 ) ) ) |
9 |
|
notbi |
⊢ ( ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ¬ ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ¬ ( 𝜓 ∨ 𝜒 ) ) ) |
10 |
8 9
|
sylbb2 |
⊢ ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ¬ 𝜑 ↔ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∨ 𝜒 ) ) ) |
11 |
5 10
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∨ 𝜒 ) ) ) |