Metamath Proof Explorer


Theorem rexprgf

Description: Convert a restricted existential quantification over a pair to a disjunction, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 17-Sep-2011) (Revised by AV, 2-Apr-2023)

Ref Expression
Hypotheses ralprgf.1 𝑥 𝜓
ralprgf.2 𝑥 𝜒
ralprgf.a ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
ralprgf.b ( 𝑥 = 𝐵 → ( 𝜑𝜒 ) )
Assertion rexprgf ( ( 𝐴𝑉𝐵𝑊 ) → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 ralprgf.1 𝑥 𝜓
2 ralprgf.2 𝑥 𝜒
3 ralprgf.a ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 ralprgf.b ( 𝑥 = 𝐵 → ( 𝜑𝜒 ) )
5 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
6 5 rexeqi ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ∃ 𝑥 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝜑 )
7 rexun ( ∃ 𝑥 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝜑 ↔ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ∨ ∃ 𝑥 ∈ { 𝐵 } 𝜑 ) )
8 6 7 bitri ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ∨ ∃ 𝑥 ∈ { 𝐵 } 𝜑 ) )
9 1 3 rexsngf ( 𝐴𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑𝜓 ) )
10 9 orbi1d ( 𝐴𝑉 → ( ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ∨ ∃ 𝑥 ∈ { 𝐵 } 𝜑 ) ↔ ( 𝜓 ∨ ∃ 𝑥 ∈ { 𝐵 } 𝜑 ) ) )
11 2 4 rexsngf ( 𝐵𝑊 → ( ∃ 𝑥 ∈ { 𝐵 } 𝜑𝜒 ) )
12 11 orbi2d ( 𝐵𝑊 → ( ( 𝜓 ∨ ∃ 𝑥 ∈ { 𝐵 } 𝜑 ) ↔ ( 𝜓𝜒 ) ) )
13 10 12 sylan9bb ( ( 𝐴𝑉𝐵𝑊 ) → ( ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ∨ ∃ 𝑥 ∈ { 𝐵 } 𝜑 ) ↔ ( 𝜓𝜒 ) ) )
14 8 13 bitrid ( ( 𝐴𝑉𝐵𝑊 ) → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓𝜒 ) ) )