Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011) (Revised by Mario Carneiro, 3-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralab.1 | ⊢ ( 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | rexrab | ⊢ ( ∃ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } 𝜒 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜓 ∧ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralab.1 | ⊢ ( 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | 1 | elrab | ⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
3 | 2 | anbi1i | ⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ∧ 𝜒 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ∧ 𝜒 ) ) |
4 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
5 | 3 4 | bitri | ⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ∧ 𝜒 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
6 | 5 | rexbii2 | ⊢ ( ∃ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } 𝜒 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜓 ∧ 𝜒 ) ) |