Metamath Proof Explorer


Theorem rexrab2

Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis ralab2.1 ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) )
Assertion rexrab2 ( ∃ 𝑥 ∈ { 𝑦𝐴𝜑 } 𝜓 ↔ ∃ 𝑦𝐴 ( 𝜑𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralab2.1 ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) )
2 df-rab { 𝑦𝐴𝜑 } = { 𝑦 ∣ ( 𝑦𝐴𝜑 ) }
3 2 rexeqi ( ∃ 𝑥 ∈ { 𝑦𝐴𝜑 } 𝜓 ↔ ∃ 𝑥 ∈ { 𝑦 ∣ ( 𝑦𝐴𝜑 ) } 𝜓 )
4 1 rexab2 ( ∃ 𝑥 ∈ { 𝑦 ∣ ( 𝑦𝐴𝜑 ) } 𝜓 ↔ ∃ 𝑦 ( ( 𝑦𝐴𝜑 ) ∧ 𝜒 ) )
5 anass ( ( ( 𝑦𝐴𝜑 ) ∧ 𝜒 ) ↔ ( 𝑦𝐴 ∧ ( 𝜑𝜒 ) ) )
6 5 exbii ( ∃ 𝑦 ( ( 𝑦𝐴𝜑 ) ∧ 𝜒 ) ↔ ∃ 𝑦 ( 𝑦𝐴 ∧ ( 𝜑𝜒 ) ) )
7 df-rex ( ∃ 𝑦𝐴 ( 𝜑𝜒 ) ↔ ∃ 𝑦 ( 𝑦𝐴 ∧ ( 𝜑𝜒 ) ) )
8 6 7 bitr4i ( ∃ 𝑦 ( ( 𝑦𝐴𝜑 ) ∧ 𝜒 ) ↔ ∃ 𝑦𝐴 ( 𝜑𝜒 ) )
9 3 4 8 3bitri ( ∃ 𝑥 ∈ { 𝑦𝐴𝜑 } 𝜓 ↔ ∃ 𝑦𝐴 ( 𝜑𝜒 ) )