Metamath Proof Explorer


Theorem rexraleqim

Description: Statement following from existence and generalization with equality. (Contributed by AV, 9-Feb-2019)

Ref Expression
Hypotheses rexraleqim.1 ( 𝑥 = 𝑧 → ( 𝜓𝜑 ) )
rexraleqim.2 ( 𝑧 = 𝑌 → ( 𝜑𝜃 ) )
Assertion rexraleqim ( ( ∃ 𝑧𝐴 𝜑 ∧ ∀ 𝑥𝐴 ( 𝜓𝑥 = 𝑌 ) ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 rexraleqim.1 ( 𝑥 = 𝑧 → ( 𝜓𝜑 ) )
2 rexraleqim.2 ( 𝑧 = 𝑌 → ( 𝜑𝜃 ) )
3 eqeq1 ( 𝑥 = 𝑧 → ( 𝑥 = 𝑌𝑧 = 𝑌 ) )
4 1 3 imbi12d ( 𝑥 = 𝑧 → ( ( 𝜓𝑥 = 𝑌 ) ↔ ( 𝜑𝑧 = 𝑌 ) ) )
5 4 rspcva ( ( 𝑧𝐴 ∧ ∀ 𝑥𝐴 ( 𝜓𝑥 = 𝑌 ) ) → ( 𝜑𝑧 = 𝑌 ) )
6 2 biimpd ( 𝑧 = 𝑌 → ( 𝜑𝜃 ) )
7 5 6 syli ( ( 𝑧𝐴 ∧ ∀ 𝑥𝐴 ( 𝜓𝑥 = 𝑌 ) ) → ( 𝜑𝜃 ) )
8 7 impancom ( ( 𝑧𝐴𝜑 ) → ( ∀ 𝑥𝐴 ( 𝜓𝑥 = 𝑌 ) → 𝜃 ) )
9 8 rexlimiva ( ∃ 𝑧𝐴 𝜑 → ( ∀ 𝑥𝐴 ( 𝜓𝑥 = 𝑌 ) → 𝜃 ) )
10 9 imp ( ( ∃ 𝑧𝐴 𝜑 ∧ ∀ 𝑥𝐴 ( 𝜓𝑥 = 𝑌 ) ) → 𝜃 )