| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexraleqim.1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝜓  ↔  𝜑 ) ) | 
						
							| 2 |  | rexraleqim.2 | ⊢ ( 𝑧  =  𝑌  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 3 |  | eqeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  𝑌  ↔  𝑧  =  𝑌 ) ) | 
						
							| 4 | 1 3 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝜓  →  𝑥  =  𝑌 )  ↔  ( 𝜑  →  𝑧  =  𝑌 ) ) ) | 
						
							| 5 | 4 | rspcva | ⊢ ( ( 𝑧  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑌 ) )  →  ( 𝜑  →  𝑧  =  𝑌 ) ) | 
						
							| 6 | 2 | biimpd | ⊢ ( 𝑧  =  𝑌  →  ( 𝜑  →  𝜃 ) ) | 
						
							| 7 | 5 6 | syli | ⊢ ( ( 𝑧  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑌 ) )  →  ( 𝜑  →  𝜃 ) ) | 
						
							| 8 | 7 | impancom | ⊢ ( ( 𝑧  ∈  𝐴  ∧  𝜑 )  →  ( ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑌 )  →  𝜃 ) ) | 
						
							| 9 | 8 | rexlimiva | ⊢ ( ∃ 𝑧  ∈  𝐴 𝜑  →  ( ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑌 )  →  𝜃 ) ) | 
						
							| 10 | 9 | imp | ⊢ ( ( ∃ 𝑧  ∈  𝐴 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑌 ) )  →  𝜃 ) |