| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqidd | ⊢ ( ( [ 𝐴  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝐴  /  𝑥 ] 𝜑 )  →  𝐴  =  𝐴 ) | 
						
							| 2 |  | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝐴  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑 | 
						
							| 3 |  | nfv | ⊢ Ⅎ 𝑦 [ 𝐴  /  𝑥 ] 𝜑 | 
						
							| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑦 ( [ 𝐴  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝐴  /  𝑥 ] 𝜑 ) | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑦 𝐴  =  𝐴 | 
						
							| 6 | 4 5 | nfim | ⊢ Ⅎ 𝑦 ( ( [ 𝐴  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝐴  /  𝑥 ] 𝜑 )  →  𝐴  =  𝐴 ) | 
						
							| 7 |  | sbceq1a | ⊢ ( 𝑦  =  𝐴  →  ( [ 𝐴  /  𝑥 ] 𝜑  ↔  [ 𝐴  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 8 |  | dfsbcq2 | ⊢ ( 𝑦  =  𝐴  →  ( [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 9 | 7 8 | anbi12d | ⊢ ( 𝑦  =  𝐴  →  ( ( [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  ↔  ( [ 𝐴  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝐴  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 10 |  | eqeq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝐴  =  𝑦  ↔  𝐴  =  𝐴 ) ) | 
						
							| 11 | 9 10 | imbi12d | ⊢ ( 𝑦  =  𝐴  →  ( ( ( [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝐴  =  𝑦 )  ↔  ( ( [ 𝐴  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝐴  /  𝑥 ] 𝜑 )  →  𝐴  =  𝐴 ) ) ) | 
						
							| 12 | 6 11 | ralsngf | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑦  ∈  { 𝐴 } ( ( [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝐴  =  𝑦 )  ↔  ( ( [ 𝐴  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝐴  /  𝑥 ] 𝜑 )  →  𝐴  =  𝐴 ) ) ) | 
						
							| 13 | 1 12 | mpbiri | ⊢ ( 𝐴  ∈  𝑉  →  ∀ 𝑦  ∈  { 𝐴 } ( ( [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝐴  =  𝑦 ) ) | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑥 { 𝐴 } | 
						
							| 15 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝐴  /  𝑥 ] 𝜑 | 
						
							| 16 |  | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑦  /  𝑥 ] 𝜑 | 
						
							| 17 | 15 16 | nfan | ⊢ Ⅎ 𝑥 ( [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 18 |  | nfv | ⊢ Ⅎ 𝑥 𝐴  =  𝑦 | 
						
							| 19 | 17 18 | nfim | ⊢ Ⅎ 𝑥 ( ( [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝐴  =  𝑦 ) | 
						
							| 20 | 14 19 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦  ∈  { 𝐴 } ( ( [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝐴  =  𝑦 ) | 
						
							| 21 |  | sbceq1a | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 22 | 21 | anbi1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  ↔  ( [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 23 |  | eqeq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =  𝑦  ↔  𝐴  =  𝑦 ) ) | 
						
							| 24 | 22 23 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 )  ↔  ( ( [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝐴  =  𝑦 ) ) ) | 
						
							| 25 | 24 | ralbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∀ 𝑦  ∈  { 𝐴 } ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑦  ∈  { 𝐴 } ( ( [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝐴  =  𝑦 ) ) ) | 
						
							| 26 | 20 25 | ralsngf | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑥  ∈  { 𝐴 } ∀ 𝑦  ∈  { 𝐴 } ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑦  ∈  { 𝐴 } ( ( [ 𝐴  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝐴  =  𝑦 ) ) ) | 
						
							| 27 | 13 26 | mpbird | ⊢ ( 𝐴  ∈  𝑉  →  ∀ 𝑥  ∈  { 𝐴 } ∀ 𝑦  ∈  { 𝐴 } ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) ) | 
						
							| 28 | 27 | biantrud | ⊢ ( 𝐴  ∈  𝑉  →  ( ∃ 𝑥  ∈  { 𝐴 } 𝜑  ↔  ( ∃ 𝑥  ∈  { 𝐴 } 𝜑  ∧  ∀ 𝑥  ∈  { 𝐴 } ∀ 𝑦  ∈  { 𝐴 } ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 29 |  | reu2 | ⊢ ( ∃! 𝑥  ∈  { 𝐴 } 𝜑  ↔  ( ∃ 𝑥  ∈  { 𝐴 } 𝜑  ∧  ∀ 𝑥  ∈  { 𝐴 } ∀ 𝑦  ∈  { 𝐴 } ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 30 | 28 29 | bitr4di | ⊢ ( 𝐴  ∈  𝑉  →  ( ∃ 𝑥  ∈  { 𝐴 } 𝜑  ↔  ∃! 𝑥  ∈  { 𝐴 } 𝜑 ) ) |