| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngop.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝐶 ) | 
						
							| 2 |  | ralrnmpo.2 | ⊢ ( 𝑧  =  𝐶  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 3 | 2 | notbid | ⊢ ( 𝑧  =  𝐶  →  ( ¬  𝜑  ↔  ¬  𝜓 ) ) | 
						
							| 4 | 1 3 | ralrnmpo | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝐶  ∈  𝑉  →  ( ∀ 𝑧  ∈  ran  𝐹 ¬  𝜑  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ¬  𝜓 ) ) | 
						
							| 5 | 4 | notbid | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝐶  ∈  𝑉  →  ( ¬  ∀ 𝑧  ∈  ran  𝐹 ¬  𝜑  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ¬  𝜓 ) ) | 
						
							| 6 |  | dfrex2 | ⊢ ( ∃ 𝑧  ∈  ran  𝐹 𝜑  ↔  ¬  ∀ 𝑧  ∈  ran  𝐹 ¬  𝜑 ) | 
						
							| 7 |  | dfrex2 | ⊢ ( ∃ 𝑦  ∈  𝐵 𝜓  ↔  ¬  ∀ 𝑦  ∈  𝐵 ¬  𝜓 ) | 
						
							| 8 | 7 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜓  ↔  ∃ 𝑥  ∈  𝐴 ¬  ∀ 𝑦  ∈  𝐵 ¬  𝜓 ) | 
						
							| 9 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  𝐴 ¬  ∀ 𝑦  ∈  𝐵 ¬  𝜓  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ¬  𝜓 ) | 
						
							| 10 | 8 9 | bitri | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜓  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ¬  𝜓 ) | 
						
							| 11 | 5 6 10 | 3bitr4g | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝐶  ∈  𝑉  →  ( ∃ 𝑧  ∈  ran  𝐹 𝜑  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜓 ) ) |