Metamath Proof Explorer


Theorem rexrot4

Description: Rotate four restricted existential quantifiers twice. (Contributed by NM, 8-Apr-2015)

Ref Expression
Assertion rexrot4 ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∃ 𝑧𝐶𝑤𝐷𝑥𝐴𝑦𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 rexcom13 ( ∃ 𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∃ 𝑤𝐷𝑧𝐶𝑦𝐵 𝜑 )
2 1 rexbii ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∃ 𝑥𝐴𝑤𝐷𝑧𝐶𝑦𝐵 𝜑 )
3 rexcom13 ( ∃ 𝑥𝐴𝑤𝐷𝑧𝐶𝑦𝐵 𝜑 ↔ ∃ 𝑧𝐶𝑤𝐷𝑥𝐴𝑦𝐵 𝜑 )
4 2 3 bitri ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∃ 𝑧𝐶𝑤𝐷𝑥𝐴𝑦𝐵 𝜑 )