Metamath Proof Explorer
Description: Convert an existential quantification restricted to a singleton to a
substitution. (Contributed by Jeff Madsen, 5-Jan-2011)
|
|
Ref |
Expression |
|
Hypotheses |
ralsn.1 |
⊢ 𝐴 ∈ V |
|
|
ralsn.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
rexsn |
⊢ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralsn.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
ralsn.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
2
|
rexsng |
⊢ ( 𝐴 ∈ V → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) |