Metamath Proof Explorer


Theorem rexsngf

Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012) (Revised by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses rexsngf.1 𝑥 𝜓
rexsngf.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion rexsngf ( 𝐴𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 rexsngf.1 𝑥 𝜓
2 rexsngf.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 rexsns ( ∃ 𝑥 ∈ { 𝐴 } 𝜑[ 𝐴 / 𝑥 ] 𝜑 )
4 1 2 sbciegf ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑𝜓 ) )
5 3 4 bitrid ( 𝐴𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑𝜓 ) )