Metamath Proof Explorer
Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012) (Revised by Glauco Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
rexsngf.1 |
⊢ Ⅎ 𝑥 𝜓 |
|
|
rexsngf.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
rexsngf |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rexsngf.1 |
⊢ Ⅎ 𝑥 𝜓 |
2 |
|
rexsngf.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
rexsns |
⊢ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) |
4 |
1 2
|
sbciegf |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
5 |
3 4
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |