Description: Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015) (Revised by NM, 22-Aug-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | rexsns | ⊢ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn | ⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) | |
2 | 1 | anbi1i | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
3 | 2 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
4 | df-rex | ⊢ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ) | |
5 | sbc5 | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) | |
6 | 3 4 5 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) |