Metamath Proof Explorer


Theorem rexsns

Description: Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015) (Revised by NM, 22-Aug-2018)

Ref Expression
Assertion rexsns ( ∃ 𝑥 ∈ { 𝐴 } 𝜑[ 𝐴 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 velsn ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 )
2 1 anbi1i ( ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴𝜑 ) )
3 2 exbii ( ∃ 𝑥 ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) )
4 df-rex ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) )
5 sbc5 ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) )
6 3 4 5 3bitr4i ( ∃ 𝑥 ∈ { 𝐴 } 𝜑[ 𝐴 / 𝑥 ] 𝜑 )