Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rexss | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
2 | 1 | pm4.71rd | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ) |
3 | 2 | anbi1d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜑 ) ) ) |
4 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
5 | 3 4 | bitrdi | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
6 | 5 | rexbidv2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |