Metamath Proof Explorer


Theorem rexsupp

Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by AV, 27-May-2019)

Ref Expression
Assertion rexsupp ( ( 𝐹 Fn 𝑋𝑋𝑉𝑍𝑊 ) → ( ∃ 𝑥 ∈ ( 𝐹 supp 𝑍 ) 𝜑 ↔ ∃ 𝑥𝑋 ( ( 𝐹𝑥 ) ≠ 𝑍𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 elsuppfn ( ( 𝐹 Fn 𝑋𝑋𝑉𝑍𝑊 ) → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑥𝑋 ∧ ( 𝐹𝑥 ) ≠ 𝑍 ) ) )
2 1 anbi1d ( ( 𝐹 Fn 𝑋𝑋𝑉𝑍𝑊 ) → ( ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ∧ 𝜑 ) ↔ ( ( 𝑥𝑋 ∧ ( 𝐹𝑥 ) ≠ 𝑍 ) ∧ 𝜑 ) ) )
3 anass ( ( ( 𝑥𝑋 ∧ ( 𝐹𝑥 ) ≠ 𝑍 ) ∧ 𝜑 ) ↔ ( 𝑥𝑋 ∧ ( ( 𝐹𝑥 ) ≠ 𝑍𝜑 ) ) )
4 2 3 bitrdi ( ( 𝐹 Fn 𝑋𝑋𝑉𝑍𝑊 ) → ( ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ∧ 𝜑 ) ↔ ( 𝑥𝑋 ∧ ( ( 𝐹𝑥 ) ≠ 𝑍𝜑 ) ) ) )
5 4 rexbidv2 ( ( 𝐹 Fn 𝑋𝑋𝑉𝑍𝑊 ) → ( ∃ 𝑥 ∈ ( 𝐹 supp 𝑍 ) 𝜑 ↔ ∃ 𝑥𝑋 ( ( 𝐹𝑥 ) ≠ 𝑍𝜑 ) ) )