Metamath Proof Explorer


Theorem rext

Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of TakeutiZaring p. 16. (Contributed by NM, 10-Aug-1993)

Ref Expression
Assertion rext ( ∀ 𝑧 ( 𝑥𝑧𝑦𝑧 ) → 𝑥 = 𝑦 )

Proof

Step Hyp Ref Expression
1 vsnid 𝑥 ∈ { 𝑥 }
2 snex { 𝑥 } ∈ V
3 eleq2 ( 𝑧 = { 𝑥 } → ( 𝑥𝑧𝑥 ∈ { 𝑥 } ) )
4 eleq2 ( 𝑧 = { 𝑥 } → ( 𝑦𝑧𝑦 ∈ { 𝑥 } ) )
5 3 4 imbi12d ( 𝑧 = { 𝑥 } → ( ( 𝑥𝑧𝑦𝑧 ) ↔ ( 𝑥 ∈ { 𝑥 } → 𝑦 ∈ { 𝑥 } ) ) )
6 2 5 spcv ( ∀ 𝑧 ( 𝑥𝑧𝑦𝑧 ) → ( 𝑥 ∈ { 𝑥 } → 𝑦 ∈ { 𝑥 } ) )
7 1 6 mpi ( ∀ 𝑧 ( 𝑥𝑧𝑦𝑧 ) → 𝑦 ∈ { 𝑥 } )
8 velsn ( 𝑦 ∈ { 𝑥 } ↔ 𝑦 = 𝑥 )
9 equcomi ( 𝑦 = 𝑥𝑥 = 𝑦 )
10 8 9 sylbi ( 𝑦 ∈ { 𝑥 } → 𝑥 = 𝑦 )
11 7 10 syl ( ∀ 𝑧 ( 𝑥𝑧𝑦𝑧 ) → 𝑥 = 𝑦 )