Step |
Hyp |
Ref |
Expression |
1 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
2 |
|
snex |
⊢ { 𝑥 } ∈ V |
3 |
|
eleq2 |
⊢ ( 𝑧 = { 𝑥 } → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ { 𝑥 } ) ) |
4 |
|
eleq2 |
⊢ ( 𝑧 = { 𝑥 } → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ { 𝑥 } ) ) |
5 |
3 4
|
imbi12d |
⊢ ( 𝑧 = { 𝑥 } → ( ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ↔ ( 𝑥 ∈ { 𝑥 } → 𝑦 ∈ { 𝑥 } ) ) ) |
6 |
2 5
|
spcv |
⊢ ( ∀ 𝑧 ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) → ( 𝑥 ∈ { 𝑥 } → 𝑦 ∈ { 𝑥 } ) ) |
7 |
1 6
|
mpi |
⊢ ( ∀ 𝑧 ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) → 𝑦 ∈ { 𝑥 } ) |
8 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑥 } ↔ 𝑦 = 𝑥 ) |
9 |
|
equcomi |
⊢ ( 𝑦 = 𝑥 → 𝑥 = 𝑦 ) |
10 |
8 9
|
sylbi |
⊢ ( 𝑦 ∈ { 𝑥 } → 𝑥 = 𝑦 ) |
11 |
7 10
|
syl |
⊢ ( ∀ 𝑧 ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) → 𝑥 = 𝑦 ) |