Metamath Proof Explorer


Theorem rextru

Description: Two ways of expressing "at least one" element. (Contributed by Zhi Wang, 23-Sep-2024)

Ref Expression
Assertion rextru ( ∃ 𝑥 𝑥𝐴 ↔ ∃ 𝑥𝐴 ⊤ )

Proof

Step Hyp Ref Expression
1 tru
2 1 biantru ( 𝑥𝐴 ↔ ( 𝑥𝐴 ∧ ⊤ ) )
3 2 exbii ( ∃ 𝑥 𝑥𝐴 ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ⊤ ) )
4 df-rex ( ∃ 𝑥𝐴 ⊤ ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ⊤ ) )
5 3 4 bitr4i ( ∃ 𝑥 𝑥𝐴 ↔ ∃ 𝑥𝐴 ⊤ )