Metamath Proof Explorer


Theorem rexuz

Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005)

Ref Expression
Assertion rexuz ( 𝑀 ∈ ℤ → ( ∃ 𝑛 ∈ ( ℤ𝑀 ) 𝜑 ↔ ∃ 𝑛 ∈ ℤ ( 𝑀𝑛𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 eluz1 ( 𝑀 ∈ ℤ → ( 𝑛 ∈ ( ℤ𝑀 ) ↔ ( 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) ) )
2 1 anbi1d ( 𝑀 ∈ ℤ → ( ( 𝑛 ∈ ( ℤ𝑀 ) ∧ 𝜑 ) ↔ ( ( 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) ∧ 𝜑 ) ) )
3 anass ( ( ( 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) ∧ 𝜑 ) ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑀𝑛𝜑 ) ) )
4 2 3 bitrdi ( 𝑀 ∈ ℤ → ( ( 𝑛 ∈ ( ℤ𝑀 ) ∧ 𝜑 ) ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑀𝑛𝜑 ) ) ) )
5 4 rexbidv2 ( 𝑀 ∈ ℤ → ( ∃ 𝑛 ∈ ( ℤ𝑀 ) 𝜑 ↔ ∃ 𝑛 ∈ ℤ ( 𝑀𝑛𝜑 ) ) )