Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexuz | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝜑 ↔ ∃ 𝑛 ∈ ℤ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz1 | ⊢ ( 𝑀 ∈ ℤ → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) ↔ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ∧ 𝜑 ) ) ) |
| 3 | anass | ⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ∧ 𝜑 ) ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) | |
| 4 | 2 3 | bitrdi | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) ) |
| 5 | 4 | rexbidv2 | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝜑 ↔ ∃ 𝑛 ∈ ℤ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) |