Metamath Proof Explorer


Theorem rexuz2

Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005)

Ref Expression
Assertion rexuz2 ( ∃ 𝑛 ∈ ( ℤ𝑀 ) 𝜑 ↔ ( 𝑀 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝑀𝑛𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 eluz2 ( 𝑛 ∈ ( ℤ𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) )
2 df-3an ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑀𝑛 ) )
3 1 2 bitri ( 𝑛 ∈ ( ℤ𝑀 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑀𝑛 ) )
4 3 anbi1i ( ( 𝑛 ∈ ( ℤ𝑀 ) ∧ 𝜑 ) ↔ ( ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑀𝑛 ) ∧ 𝜑 ) )
5 anass ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑀𝑛 ) ∧ 𝜑 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ( 𝑀𝑛𝜑 ) ) )
6 an21 ( ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ( 𝑀𝑛𝜑 ) ) ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝑀𝑛𝜑 ) ) ) )
7 5 6 bitri ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑀𝑛 ) ∧ 𝜑 ) ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝑀𝑛𝜑 ) ) ) )
8 4 7 bitri ( ( 𝑛 ∈ ( ℤ𝑀 ) ∧ 𝜑 ) ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝑀𝑛𝜑 ) ) ) )
9 8 rexbii2 ( ∃ 𝑛 ∈ ( ℤ𝑀 ) 𝜑 ↔ ∃ 𝑛 ∈ ℤ ( 𝑀 ∈ ℤ ∧ ( 𝑀𝑛𝜑 ) ) )
10 r19.42v ( ∃ 𝑛 ∈ ℤ ( 𝑀 ∈ ℤ ∧ ( 𝑀𝑛𝜑 ) ) ↔ ( 𝑀 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝑀𝑛𝜑 ) ) )
11 9 10 bitri ( ∃ 𝑛 ∈ ( ℤ𝑀 ) 𝜑 ↔ ( 𝑀 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝑀𝑛𝜑 ) ) )