Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) |
2 |
|
df-3an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑀 ≤ 𝑛 ) ) |
3 |
1 2
|
bitri |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑀 ≤ 𝑛 ) ) |
4 |
3
|
anbi1i |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) ↔ ( ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑀 ≤ 𝑛 ) ∧ 𝜑 ) ) |
5 |
|
anass |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑀 ≤ 𝑛 ) ∧ 𝜑 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) |
6 |
|
an21 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) ) |
7 |
5 6
|
bitri |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑀 ≤ 𝑛 ) ∧ 𝜑 ) ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) ) |
8 |
4 7
|
bitri |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) ) |
9 |
8
|
rexbii2 |
⊢ ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝜑 ↔ ∃ 𝑛 ∈ ℤ ( 𝑀 ∈ ℤ ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) |
10 |
|
r19.42v |
⊢ ( ∃ 𝑛 ∈ ℤ ( 𝑀 ∈ ℤ ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ↔ ( 𝑀 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) |
11 |
9 10
|
bitri |
⊢ ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝜑 ↔ ( 𝑀 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) |