Step |
Hyp |
Ref |
Expression |
1 |
|
rexuz3.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
ralel |
⊢ ∀ 𝑘 ∈ 𝑍 𝑘 ∈ 𝑍 |
3 |
|
fveq2 |
⊢ ( 𝑗 = 𝑀 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑀 ) ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑗 = 𝑀 → ( ℤ≥ ‘ 𝑗 ) = 𝑍 ) |
5 |
4
|
raleqdv |
⊢ ( 𝑗 = 𝑀 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ↔ ∀ 𝑘 ∈ 𝑍 𝑘 ∈ 𝑍 ) ) |
6 |
5
|
rspcev |
⊢ ( ( 𝑀 ∈ ℤ ∧ ∀ 𝑘 ∈ 𝑍 𝑘 ∈ 𝑍 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ) |
7 |
2 6
|
mpan2 |
⊢ ( 𝑀 ∈ ℤ → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ) |
8 |
7
|
biantrurd |
⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) ) |
9 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
10 |
9
|
a1d |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝜑 → 𝑘 ∈ 𝑍 ) ) |
11 |
10
|
ancrd |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝜑 → ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) ) |
12 |
11
|
ralimdva |
⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) ) |
13 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) |
14 |
13 1
|
eleq2s |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
15 |
12 14
|
jctild |
⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 → ( 𝑗 ∈ ℤ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) ) ) |
16 |
15
|
imp |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ( 𝑗 ∈ ℤ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) ) |
17 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
18 |
|
simpl |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) → 𝑘 ∈ 𝑍 ) |
19 |
18
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ) |
20 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) |
21 |
20
|
rspcva |
⊢ ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
22 |
17 19 21
|
syl2an |
⊢ ( ( 𝑗 ∈ ℤ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) → 𝑗 ∈ 𝑍 ) |
23 |
|
simpr |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) → 𝜑 ) |
24 |
23
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) |
25 |
24
|
adantl |
⊢ ( ( 𝑗 ∈ ℤ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) |
26 |
22 25
|
jca |
⊢ ( ( 𝑗 ∈ ℤ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) → ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
27 |
16 26
|
impbii |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ↔ ( 𝑗 ∈ ℤ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) ) |
28 |
27
|
rexbii2 |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) |
29 |
|
rexanuz |
⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ↔ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
30 |
28 29
|
bitr2i |
⊢ ( ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ 𝑍 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) |
31 |
8 30
|
bitr2di |
⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |