| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rexuz3.1 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 2 | 
							
								
							 | 
							eluzelre | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑗  ∈  ℝ )  | 
						
						
							| 3 | 
							
								2 1
							 | 
							eleq2s | 
							⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ℝ )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 )  →  𝑗  ∈  ℝ )  | 
						
						
							| 5 | 
							
								
							 | 
							eluzelz | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑗  ∈  ℤ )  | 
						
						
							| 6 | 
							
								5 1
							 | 
							eleq2s | 
							⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ℤ )  | 
						
						
							| 7 | 
							
								
							 | 
							eluzelz | 
							⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑘  ∈  ℤ )  | 
						
						
							| 8 | 
							
								7 1
							 | 
							eleq2s | 
							⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  ℤ )  | 
						
						
							| 9 | 
							
								
							 | 
							eluz | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  ↔  𝑗  ≤  𝑘 ) )  | 
						
						
							| 10 | 
							
								6 8 9
							 | 
							syl2an | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  ↔  𝑗  ≤  𝑘 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							biimprd | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( 𝑗  ≤  𝑘  →  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							expimpd | 
							⊢ ( 𝑗  ∈  𝑍  →  ( ( 𝑘  ∈  𝑍  ∧  𝑗  ≤  𝑘 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							imim1d | 
							⊢ ( 𝑗  ∈  𝑍  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  𝜑 )  →  ( ( 𝑘  ∈  𝑍  ∧  𝑗  ≤  𝑘 )  →  𝜑 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							exp4a | 
							⊢ ( 𝑗  ∈  𝑍  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  𝜑 )  →  ( 𝑘  ∈  𝑍  →  ( 𝑗  ≤  𝑘  →  𝜑 ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ralimdv2 | 
							⊢ ( 𝑗  ∈  𝑍  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  →  ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							imp | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 )  →  ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 ) )  | 
						
						
							| 17 | 
							
								4 16
							 | 
							jca | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 )  →  ( 𝑗  ∈  ℝ  ∧  ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							reximi2 | 
							⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  →  ∃ 𝑗  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  𝑀  ∈  ℤ )  | 
						
						
							| 20 | 
							
								
							 | 
							flcl | 
							⊢ ( 𝑗  ∈  ℝ  →  ( ⌊ ‘ 𝑗 )  ∈  ℤ )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantl | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ⌊ ‘ 𝑗 )  ∈  ℤ )  | 
						
						
							| 22 | 
							
								21
							 | 
							peano2zd | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ( ⌊ ‘ 𝑗 )  +  1 )  ∈  ℤ )  | 
						
						
							| 23 | 
							
								22 19
							 | 
							ifcld | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ℤ )  | 
						
						
							| 24 | 
							
								
							 | 
							zre | 
							⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ )  | 
						
						
							| 25 | 
							
								
							 | 
							reflcl | 
							⊢ ( 𝑗  ∈  ℝ  →  ( ⌊ ‘ 𝑗 )  ∈  ℝ )  | 
						
						
							| 26 | 
							
								
							 | 
							peano2re | 
							⊢ ( ( ⌊ ‘ 𝑗 )  ∈  ℝ  →  ( ( ⌊ ‘ 𝑗 )  +  1 )  ∈  ℝ )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl | 
							⊢ ( 𝑗  ∈  ℝ  →  ( ( ⌊ ‘ 𝑗 )  +  1 )  ∈  ℝ )  | 
						
						
							| 28 | 
							
								
							 | 
							max1 | 
							⊢ ( ( 𝑀  ∈  ℝ  ∧  ( ( ⌊ ‘ 𝑗 )  +  1 )  ∈  ℝ )  →  𝑀  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  | 
						
						
							| 29 | 
							
								24 27 28
							 | 
							syl2an | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  𝑀  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eluz2 | 
							⊢ ( if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑀  ∈  ℤ  ∧  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ℤ  ∧  𝑀  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  | 
						
						
							| 31 | 
							
								19 23 29 30
							 | 
							syl3anbrc | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 32 | 
							
								31 1
							 | 
							eleqtrrdi | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  𝑍 )  | 
						
						
							| 33 | 
							
								
							 | 
							impexp | 
							⊢ ( ( ( 𝑘  ∈  𝑍  ∧  𝑗  ≤  𝑘 )  →  𝜑 )  ↔  ( 𝑘  ∈  𝑍  →  ( 𝑗  ≤  𝑘  →  𝜑 ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							uzss | 
							⊢ ( if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  ⊆  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 35 | 
							
								31 34
							 | 
							syl | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  ⊆  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 36 | 
							
								35 1
							 | 
							sseqtrrdi | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  ⊆  𝑍 )  | 
						
						
							| 37 | 
							
								36
							 | 
							sselda | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 38 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  𝑗  ∈  ℝ )  | 
						
						
							| 39 | 
							
								23
							 | 
							adantr | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ℤ )  | 
						
						
							| 40 | 
							
								39
							 | 
							zred | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ℝ )  | 
						
						
							| 41 | 
							
								
							 | 
							eluzelre | 
							⊢ ( 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  →  𝑘  ∈  ℝ )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantl | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  𝑘  ∈  ℝ )  | 
						
						
							| 43 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  𝑗  ∈  ℝ )  | 
						
						
							| 44 | 
							
								27
							 | 
							adantl | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ( ⌊ ‘ 𝑗 )  +  1 )  ∈  ℝ )  | 
						
						
							| 45 | 
							
								23
							 | 
							zred | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ℝ )  | 
						
						
							| 46 | 
							
								
							 | 
							fllep1 | 
							⊢ ( 𝑗  ∈  ℝ  →  𝑗  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantl | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  𝑗  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							max2 | 
							⊢ ( ( 𝑀  ∈  ℝ  ∧  ( ( ⌊ ‘ 𝑗 )  +  1 )  ∈  ℝ )  →  ( ( ⌊ ‘ 𝑗 )  +  1 )  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  | 
						
						
							| 49 | 
							
								24 27 48
							 | 
							syl2an | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ( ⌊ ‘ 𝑗 )  +  1 )  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  | 
						
						
							| 50 | 
							
								43 44 45 47 49
							 | 
							letrd | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  𝑗  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							adantr | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  𝑗  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  | 
						
						
							| 52 | 
							
								
							 | 
							eluzle | 
							⊢ ( 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ≤  𝑘 )  | 
						
						
							| 53 | 
							
								52
							 | 
							adantl | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ≤  𝑘 )  | 
						
						
							| 54 | 
							
								38 40 42 51 53
							 | 
							letrd | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  𝑗  ≤  𝑘 )  | 
						
						
							| 55 | 
							
								37 54
							 | 
							jca | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  ( 𝑘  ∈  𝑍  ∧  𝑗  ≤  𝑘 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ex | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  →  ( 𝑘  ∈  𝑍  ∧  𝑗  ≤  𝑘 ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							imim1d | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ( ( 𝑘  ∈  𝑍  ∧  𝑗  ≤  𝑘 )  →  𝜑 )  →  ( 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  →  𝜑 ) ) )  | 
						
						
							| 58 | 
							
								33 57
							 | 
							biimtrrid | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ( 𝑘  ∈  𝑍  →  ( 𝑗  ≤  𝑘  →  𝜑 ) )  →  ( 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  →  𝜑 ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							ralimdv2 | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) 𝜑 ) )  | 
						
						
							| 60 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑚  =  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  →  ( ℤ≥ ‘ 𝑚 )  =  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							raleqdv | 
							⊢ ( 𝑚  =  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) 𝜑  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) 𝜑 ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							rspcev | 
							⊢ ( ( if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) 𝜑 )  →  ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) 𝜑 )  | 
						
						
							| 63 | 
							
								32 59 62
							 | 
							syl6an | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 )  →  ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) 𝜑 ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							rexlimdva | 
							⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑗  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 )  →  ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) 𝜑 ) )  | 
						
						
							| 65 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑚  =  𝑗  →  ( ℤ≥ ‘ 𝑚 )  =  ( ℤ≥ ‘ 𝑗 ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							raleqdv | 
							⊢ ( 𝑚  =  𝑗  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) 𝜑  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) 𝜑  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 )  | 
						
						
							| 68 | 
							
								64 67
							 | 
							imbitrdi | 
							⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑗  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 ) )  | 
						
						
							| 69 | 
							
								18 68
							 | 
							impbid2 | 
							⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  ↔  ∃ 𝑗  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 ) ) )  |