Metamath Proof Explorer


Theorem rexv

Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004)

Ref Expression
Assertion rexv ( ∃ 𝑥 ∈ V 𝜑 ↔ ∃ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 df-rex ( ∃ 𝑥 ∈ V 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ V ∧ 𝜑 ) )
2 vex 𝑥 ∈ V
3 2 biantrur ( 𝜑 ↔ ( 𝑥 ∈ V ∧ 𝜑 ) )
4 3 exbii ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ V ∧ 𝜑 ) )
5 1 4 bitr4i ( ∃ 𝑥 ∈ V 𝜑 ↔ ∃ 𝑥 𝜑 )