Metamath Proof Explorer


Theorem rexxfr

Description: Transfer existence from a variable x to another variable y contained in expression A . (Contributed by NM, 10-Jun-2005) (Revised by Mario Carneiro, 15-Aug-2014)

Ref Expression
Hypotheses ralxfr.1 ( 𝑦𝐶𝐴𝐵 )
ralxfr.2 ( 𝑥𝐵 → ∃ 𝑦𝐶 𝑥 = 𝐴 )
ralxfr.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion rexxfr ( ∃ 𝑥𝐵 𝜑 ↔ ∃ 𝑦𝐶 𝜓 )

Proof

Step Hyp Ref Expression
1 ralxfr.1 ( 𝑦𝐶𝐴𝐵 )
2 ralxfr.2 ( 𝑥𝐵 → ∃ 𝑦𝐶 𝑥 = 𝐴 )
3 ralxfr.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 dfrex2 ( ∃ 𝑥𝐵 𝜑 ↔ ¬ ∀ 𝑥𝐵 ¬ 𝜑 )
5 dfrex2 ( ∃ 𝑦𝐶 𝜓 ↔ ¬ ∀ 𝑦𝐶 ¬ 𝜓 )
6 3 notbid ( 𝑥 = 𝐴 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
7 1 2 6 ralxfr ( ∀ 𝑥𝐵 ¬ 𝜑 ↔ ∀ 𝑦𝐶 ¬ 𝜓 )
8 5 7 xchbinxr ( ∃ 𝑦𝐶 𝜓 ↔ ¬ ∀ 𝑥𝐵 ¬ 𝜑 )
9 4 8 bitr4i ( ∃ 𝑥𝐵 𝜑 ↔ ∃ 𝑦𝐶 𝜓 )