Metamath Proof Explorer


Theorem rexxfrd

Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by FL, 10-Apr-2007) (Revised by Mario Carneiro, 15-Aug-2014)

Ref Expression
Hypotheses ralxfrd.1 ( ( 𝜑𝑦𝐶 ) → 𝐴𝐵 )
ralxfrd.2 ( ( 𝜑𝑥𝐵 ) → ∃ 𝑦𝐶 𝑥 = 𝐴 )
ralxfrd.3 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
Assertion rexxfrd ( 𝜑 → ( ∃ 𝑥𝐵 𝜓 ↔ ∃ 𝑦𝐶 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralxfrd.1 ( ( 𝜑𝑦𝐶 ) → 𝐴𝐵 )
2 ralxfrd.2 ( ( 𝜑𝑥𝐵 ) → ∃ 𝑦𝐶 𝑥 = 𝐴 )
3 ralxfrd.3 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
4 3 notbid ( ( 𝜑𝑥 = 𝐴 ) → ( ¬ 𝜓 ↔ ¬ 𝜒 ) )
5 1 2 4 ralxfrd ( 𝜑 → ( ∀ 𝑥𝐵 ¬ 𝜓 ↔ ∀ 𝑦𝐶 ¬ 𝜒 ) )
6 5 notbid ( 𝜑 → ( ¬ ∀ 𝑥𝐵 ¬ 𝜓 ↔ ¬ ∀ 𝑦𝐶 ¬ 𝜒 ) )
7 dfrex2 ( ∃ 𝑥𝐵 𝜓 ↔ ¬ ∀ 𝑥𝐵 ¬ 𝜓 )
8 dfrex2 ( ∃ 𝑦𝐶 𝜒 ↔ ¬ ∀ 𝑦𝐶 ¬ 𝜒 )
9 6 7 8 3bitr4g ( 𝜑 → ( ∃ 𝑥𝐵 𝜓 ↔ ∃ 𝑦𝐶 𝜒 ) )