Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by FL, 10-Apr-2007) (Revised by Mario Carneiro, 15-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ralxfrd.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) | |
ralxfrd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | ||
ralxfrd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | rexxfrd | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ ∃ 𝑦 ∈ 𝐶 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxfrd.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) | |
2 | ralxfrd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | |
3 | ralxfrd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
4 | 3 | notbid | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) |
5 | 1 2 4 | ralxfrd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ¬ 𝜓 ↔ ∀ 𝑦 ∈ 𝐶 ¬ 𝜒 ) ) |
6 | 5 | notbid | ⊢ ( 𝜑 → ( ¬ ∀ 𝑥 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∀ 𝑦 ∈ 𝐶 ¬ 𝜒 ) ) |
7 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ ¬ ∀ 𝑥 ∈ 𝐵 ¬ 𝜓 ) | |
8 | dfrex2 | ⊢ ( ∃ 𝑦 ∈ 𝐶 𝜒 ↔ ¬ ∀ 𝑦 ∈ 𝐶 ¬ 𝜒 ) | |
9 | 6 7 8 | 3bitr4g | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ ∃ 𝑦 ∈ 𝐶 𝜒 ) ) |