Metamath Proof Explorer


Theorem rexxfrd2

Description: Transfer existence from a variable x to another variable y contained in expression A . Variant of rexxfrd . (Contributed by Alexander van der Vekens, 25-Apr-2018)

Ref Expression
Hypotheses ralxfrd2.1 ( ( 𝜑𝑦𝐶 ) → 𝐴𝐵 )
ralxfrd2.2 ( ( 𝜑𝑥𝐵 ) → ∃ 𝑦𝐶 𝑥 = 𝐴 )
ralxfrd2.3 ( ( 𝜑𝑦𝐶𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
Assertion rexxfrd2 ( 𝜑 → ( ∃ 𝑥𝐵 𝜓 ↔ ∃ 𝑦𝐶 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralxfrd2.1 ( ( 𝜑𝑦𝐶 ) → 𝐴𝐵 )
2 ralxfrd2.2 ( ( 𝜑𝑥𝐵 ) → ∃ 𝑦𝐶 𝑥 = 𝐴 )
3 ralxfrd2.3 ( ( 𝜑𝑦𝐶𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
4 3 notbid ( ( 𝜑𝑦𝐶𝑥 = 𝐴 ) → ( ¬ 𝜓 ↔ ¬ 𝜒 ) )
5 1 2 4 ralxfrd2 ( 𝜑 → ( ∀ 𝑥𝐵 ¬ 𝜓 ↔ ∀ 𝑦𝐶 ¬ 𝜒 ) )
6 5 notbid ( 𝜑 → ( ¬ ∀ 𝑥𝐵 ¬ 𝜓 ↔ ¬ ∀ 𝑦𝐶 ¬ 𝜒 ) )
7 dfrex2 ( ∃ 𝑥𝐵 𝜓 ↔ ¬ ∀ 𝑥𝐵 ¬ 𝜓 )
8 dfrex2 ( ∃ 𝑦𝐶 𝜒 ↔ ¬ ∀ 𝑦𝐶 ¬ 𝜒 )
9 6 7 8 3bitr4g ( 𝜑 → ( ∃ 𝑥𝐵 𝜓 ↔ ∃ 𝑦𝐶 𝜒 ) )