Metamath Proof Explorer


Theorem rexxp

Description: Existential quantification restricted to a Cartesian product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995) (Revised by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypothesis ralxp.1 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝜑𝜓 ) )
Assertion rexxp ( ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ∃ 𝑦𝐴𝑧𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 ralxp.1 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝜑𝜓 ) )
2 iunxpconst 𝑦𝐴 ( { 𝑦 } × 𝐵 ) = ( 𝐴 × 𝐵 )
3 2 rexeqi ( ∃ 𝑥 𝑦𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 )
4 1 rexiunxp ( ∃ 𝑥 𝑦𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ∃ 𝑦𝐴𝑧𝐵 𝜓 )
5 3 4 bitr3i ( ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ∃ 𝑦𝐴𝑧𝐵 𝜓 )