Metamath Proof Explorer


Theorem rexxpf

Description: Version of rexxp with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses ralxpf.1 𝑦 𝜑
ralxpf.2 𝑧 𝜑
ralxpf.3 𝑥 𝜓
ralxpf.4 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝜑𝜓 ) )
Assertion rexxpf ( ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ∃ 𝑦𝐴𝑧𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 ralxpf.1 𝑦 𝜑
2 ralxpf.2 𝑧 𝜑
3 ralxpf.3 𝑥 𝜓
4 ralxpf.4 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝜑𝜓 ) )
5 1 nfn 𝑦 ¬ 𝜑
6 2 nfn 𝑧 ¬ 𝜑
7 3 nfn 𝑥 ¬ 𝜓
8 4 notbid ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
9 5 6 7 8 ralxpf ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ¬ 𝜑 ↔ ∀ 𝑦𝐴𝑧𝐵 ¬ 𝜓 )
10 ralnex ( ∀ 𝑧𝐵 ¬ 𝜓 ↔ ¬ ∃ 𝑧𝐵 𝜓 )
11 10 ralbii ( ∀ 𝑦𝐴𝑧𝐵 ¬ 𝜓 ↔ ∀ 𝑦𝐴 ¬ ∃ 𝑧𝐵 𝜓 )
12 9 11 bitri ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ¬ 𝜑 ↔ ∀ 𝑦𝐴 ¬ ∃ 𝑧𝐵 𝜓 )
13 12 notbii ( ¬ ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ¬ 𝜑 ↔ ¬ ∀ 𝑦𝐴 ¬ ∃ 𝑧𝐵 𝜓 )
14 dfrex2 ( ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ¬ ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ¬ 𝜑 )
15 dfrex2 ( ∃ 𝑦𝐴𝑧𝐵 𝜓 ↔ ¬ ∀ 𝑦𝐴 ¬ ∃ 𝑧𝐵 𝜓 )
16 13 14 15 3bitr4i ( ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ∃ 𝑦𝐴𝑧𝐵 𝜓 )