| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralxpf.1 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 2 |  | ralxpf.2 | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 3 |  | ralxpf.3 | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 4 |  | ralxpf.4 | ⊢ ( 𝑥  =  〈 𝑦 ,  𝑧 〉  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 5 | 1 | nfn | ⊢ Ⅎ 𝑦 ¬  𝜑 | 
						
							| 6 | 2 | nfn | ⊢ Ⅎ 𝑧 ¬  𝜑 | 
						
							| 7 | 3 | nfn | ⊢ Ⅎ 𝑥 ¬  𝜓 | 
						
							| 8 | 4 | notbid | ⊢ ( 𝑥  =  〈 𝑦 ,  𝑧 〉  →  ( ¬  𝜑  ↔  ¬  𝜓 ) ) | 
						
							| 9 | 5 6 7 8 | ralxpf | ⊢ ( ∀ 𝑥  ∈  ( 𝐴  ×  𝐵 ) ¬  𝜑  ↔  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ¬  𝜓 ) | 
						
							| 10 |  | ralnex | ⊢ ( ∀ 𝑧  ∈  𝐵 ¬  𝜓  ↔  ¬  ∃ 𝑧  ∈  𝐵 𝜓 ) | 
						
							| 11 | 10 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ¬  𝜓  ↔  ∀ 𝑦  ∈  𝐴 ¬  ∃ 𝑧  ∈  𝐵 𝜓 ) | 
						
							| 12 | 9 11 | bitri | ⊢ ( ∀ 𝑥  ∈  ( 𝐴  ×  𝐵 ) ¬  𝜑  ↔  ∀ 𝑦  ∈  𝐴 ¬  ∃ 𝑧  ∈  𝐵 𝜓 ) | 
						
							| 13 | 12 | notbii | ⊢ ( ¬  ∀ 𝑥  ∈  ( 𝐴  ×  𝐵 ) ¬  𝜑  ↔  ¬  ∀ 𝑦  ∈  𝐴 ¬  ∃ 𝑧  ∈  𝐵 𝜓 ) | 
						
							| 14 |  | dfrex2 | ⊢ ( ∃ 𝑥  ∈  ( 𝐴  ×  𝐵 ) 𝜑  ↔  ¬  ∀ 𝑥  ∈  ( 𝐴  ×  𝐵 ) ¬  𝜑 ) | 
						
							| 15 |  | dfrex2 | ⊢ ( ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝜓  ↔  ¬  ∀ 𝑦  ∈  𝐴 ¬  ∃ 𝑧  ∈  𝐵 𝜓 ) | 
						
							| 16 | 13 14 15 | 3bitr4i | ⊢ ( ∃ 𝑥  ∈  ( 𝐴  ×  𝐵 ) 𝜑  ↔  ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝜓 ) |