Step |
Hyp |
Ref |
Expression |
1 |
|
ralxpf.1 |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
ralxpf.2 |
⊢ Ⅎ 𝑧 𝜑 |
3 |
|
ralxpf.3 |
⊢ Ⅎ 𝑥 𝜓 |
4 |
|
ralxpf.4 |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) |
5 |
1
|
nfn |
⊢ Ⅎ 𝑦 ¬ 𝜑 |
6 |
2
|
nfn |
⊢ Ⅎ 𝑧 ¬ 𝜑 |
7 |
3
|
nfn |
⊢ Ⅎ 𝑥 ¬ 𝜓 |
8 |
4
|
notbid |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
9 |
5 6 7 8
|
ralxpf |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ¬ 𝜓 ) |
10 |
|
ralnex |
⊢ ( ∀ 𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
11 |
10
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
12 |
9 11
|
bitri |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
13 |
12
|
notbii |
⊢ ( ¬ ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ¬ 𝜑 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
14 |
|
dfrex2 |
⊢ ( ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ¬ ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ¬ 𝜑 ) |
15 |
|
dfrex2 |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝜓 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
16 |
13 14 15
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝜓 ) |