Step |
Hyp |
Ref |
Expression |
1 |
|
rfcnnnub.1 |
⊢ Ⅎ 𝑡 𝐹 |
2 |
|
rfcnnnub.2 |
⊢ Ⅎ 𝑡 𝜑 |
3 |
|
rfcnnnub.3 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
4 |
|
rfcnnnub.4 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
5 |
|
rfcnnnub.5 |
⊢ 𝑇 = ∪ 𝐽 |
6 |
|
rfcnnnub.6 |
⊢ ( 𝜑 → 𝑇 ≠ ∅ ) |
7 |
|
rfcnnnub.7 |
⊢ 𝐶 = ( 𝐽 Cn 𝐾 ) |
8 |
|
rfcnnnub.8 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐶 ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑠 𝐹 |
10 |
|
nfcv |
⊢ Ⅎ 𝑠 𝑇 |
11 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑇 |
12 |
|
nfv |
⊢ Ⅎ 𝑠 𝜑 |
13 |
8 7
|
eleqtrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
14 |
9 1 10 11 12 2 5 3 4 13 6
|
evthf |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝑇 ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ) |
15 |
|
df-rex |
⊢ ( ∃ 𝑠 ∈ 𝑇 ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ↔ ∃ 𝑠 ( 𝑠 ∈ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ) ) |
16 |
14 15
|
sylib |
⊢ ( 𝜑 → ∃ 𝑠 ( 𝑠 ∈ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ) ) |
17 |
3 5 7 8
|
fcnre |
⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ ℝ ) |
18 |
17
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑠 ) ∈ ℝ ) |
19 |
18
|
ex |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝑇 → ( 𝐹 ‘ 𝑠 ) ∈ ℝ ) ) |
20 |
19
|
anim1d |
⊢ ( 𝜑 → ( ( 𝑠 ∈ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ) → ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ) ) ) |
21 |
20
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑠 ( 𝑠 ∈ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ) → ∃ 𝑠 ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ) ) ) |
22 |
16 21
|
mpd |
⊢ ( 𝜑 → ∃ 𝑠 ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ) ) |
23 |
17
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
24 |
23
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ) |
25 |
2 24
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
26 |
|
19.41v |
⊢ ( ∃ 𝑠 ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ↔ ( ∃ 𝑠 ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ) |
27 |
22 25 26
|
sylanbrc |
⊢ ( 𝜑 → ∃ 𝑠 ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ) |
28 |
|
df-3an |
⊢ ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ↔ ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ) |
29 |
28
|
exbii |
⊢ ( ∃ 𝑠 ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ↔ ∃ 𝑠 ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ) |
30 |
27 29
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑠 ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ) |
31 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑠 |
32 |
1 31
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐹 ‘ 𝑠 ) |
33 |
32
|
nfel1 |
⊢ Ⅎ 𝑡 ( 𝐹 ‘ 𝑠 ) ∈ ℝ |
34 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) |
35 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ |
36 |
33 34 35
|
nf3an |
⊢ Ⅎ 𝑡 ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
37 |
|
nfv |
⊢ Ⅎ 𝑡 𝑛 ∈ ℕ |
38 |
|
nfcv |
⊢ Ⅎ 𝑡 < |
39 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑛 |
40 |
32 38 39
|
nfbr |
⊢ Ⅎ 𝑡 ( 𝐹 ‘ 𝑠 ) < 𝑛 |
41 |
37 40
|
nfan |
⊢ Ⅎ 𝑡 ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) |
42 |
36 41
|
nfan |
⊢ Ⅎ 𝑡 ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) ) |
43 |
|
simpll3 |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) ) ∧ 𝑡 ∈ 𝑇 ) → ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
44 |
|
simpr |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
45 |
|
rsp |
⊢ ( ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ → ( 𝑡 ∈ 𝑇 → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ) |
46 |
43 44 45
|
sylc |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
47 |
|
simpll1 |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑠 ) ∈ ℝ ) |
48 |
|
simplrl |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑛 ∈ ℕ ) |
49 |
48
|
nnred |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑛 ∈ ℝ ) |
50 |
|
simpl2 |
⊢ ( ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) ) → ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ) |
51 |
50
|
r19.21bi |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ) |
52 |
|
simplrr |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑠 ) < 𝑛 ) |
53 |
46 47 49 51 52
|
lelttrd |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) < 𝑛 ) |
54 |
53
|
ex |
⊢ ( ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) ) → ( 𝑡 ∈ 𝑇 → ( 𝐹 ‘ 𝑡 ) < 𝑛 ) ) |
55 |
42 54
|
ralrimi |
⊢ ( ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) ) → ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑛 ) |
56 |
|
arch |
⊢ ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) |
57 |
56
|
3ad2ant1 |
⊢ ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) → ∃ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑠 ) < 𝑛 ) |
58 |
55 57
|
reximddv |
⊢ ( ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) → ∃ 𝑛 ∈ ℕ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑛 ) |
59 |
58
|
eximi |
⊢ ( ∃ 𝑠 ( ( 𝐹 ‘ 𝑠 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑠 ) ∧ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) → ∃ 𝑠 ∃ 𝑛 ∈ ℕ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑛 ) |
60 |
30 59
|
syl |
⊢ ( 𝜑 → ∃ 𝑠 ∃ 𝑛 ∈ ℕ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑛 ) |
61 |
|
19.9v |
⊢ ( ∃ 𝑠 ∃ 𝑛 ∈ ℕ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑛 ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑛 ) |
62 |
60 61
|
sylib |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑡 ∈ 𝑇 ( 𝐹 ‘ 𝑡 ) < 𝑛 ) |