Step |
Hyp |
Ref |
Expression |
1 |
|
rfcnpre1.1 |
⊢ Ⅎ 𝑥 𝐵 |
2 |
|
rfcnpre1.2 |
⊢ Ⅎ 𝑥 𝐹 |
3 |
|
rfcnpre1.3 |
⊢ Ⅎ 𝑥 𝜑 |
4 |
|
rfcnpre1.4 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
5 |
|
rfcnpre1.5 |
⊢ 𝑋 = ∪ 𝐽 |
6 |
|
rfcnpre1.6 |
⊢ 𝐴 = { 𝑥 ∈ 𝑋 ∣ 𝐵 < ( 𝐹 ‘ 𝑥 ) } |
7 |
|
rfcnpre1.7 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
8 |
|
rfcnpre1.8 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
9 |
2
|
nfcnv |
⊢ Ⅎ 𝑥 ◡ 𝐹 |
10 |
|
nfcv |
⊢ Ⅎ 𝑥 (,) |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 +∞ |
12 |
1 10 11
|
nfov |
⊢ Ⅎ 𝑥 ( 𝐵 (,) +∞ ) |
13 |
9 12
|
nfima |
⊢ Ⅎ 𝑥 ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) |
14 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝑋 ∣ 𝐵 < ( 𝐹 ‘ 𝑥 ) } |
15 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
16 |
8 15
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
17 |
|
istopon |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽 ) ) |
18 |
16 5 17
|
sylanblrc |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
19 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
20 |
4 19
|
eqeltri |
⊢ 𝐾 ∈ ( TopOn ‘ ℝ ) |
21 |
|
iscn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ℝ ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ ℝ ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
22 |
18 20 21
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ ℝ ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
23 |
8 22
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝑋 ⟶ ℝ ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
24 |
23
|
simpld |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
25 |
24
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
26 |
|
elioopnf |
⊢ ( 𝐵 ∈ ℝ* → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐵 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 𝐵 < ( 𝐹 ‘ 𝑥 ) ) ) ) |
27 |
7 26
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐵 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 𝐵 < ( 𝐹 ‘ 𝑥 ) ) ) ) |
28 |
27
|
baibd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐵 (,) +∞ ) ↔ 𝐵 < ( 𝐹 ‘ 𝑥 ) ) ) |
29 |
25 28
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐵 (,) +∞ ) ↔ 𝐵 < ( 𝐹 ‘ 𝑥 ) ) ) |
30 |
29
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐵 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝐵 < ( 𝐹 ‘ 𝑥 ) ) ) ) |
31 |
|
ffn |
⊢ ( 𝐹 : 𝑋 ⟶ ℝ → 𝐹 Fn 𝑋 ) |
32 |
|
elpreima |
⊢ ( 𝐹 Fn 𝑋 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐵 (,) +∞ ) ) ) ) |
33 |
24 31 32
|
3syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐵 (,) +∞ ) ) ) ) |
34 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝑋 ∣ 𝐵 < ( 𝐹 ‘ 𝑥 ) } ↔ ( 𝑥 ∈ 𝑋 ∧ 𝐵 < ( 𝐹 ‘ 𝑥 ) ) ) |
35 |
34
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ 𝑋 ∣ 𝐵 < ( 𝐹 ‘ 𝑥 ) } ↔ ( 𝑥 ∈ 𝑋 ∧ 𝐵 < ( 𝐹 ‘ 𝑥 ) ) ) ) |
36 |
30 33 35
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) ↔ 𝑥 ∈ { 𝑥 ∈ 𝑋 ∣ 𝐵 < ( 𝐹 ‘ 𝑥 ) } ) ) |
37 |
3 13 14 36
|
eqrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) = { 𝑥 ∈ 𝑋 ∣ 𝐵 < ( 𝐹 ‘ 𝑥 ) } ) |
38 |
37 6
|
eqtr4di |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) = 𝐴 ) |
39 |
|
iooretop |
⊢ ( 𝐵 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) |
40 |
39 4
|
eleqtrri |
⊢ ( 𝐵 (,) +∞ ) ∈ 𝐾 |
41 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐵 (,) +∞ ) ∈ 𝐾 ) → ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) ∈ 𝐽 ) |
42 |
8 40 41
|
sylancl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) ∈ 𝐽 ) |
43 |
38 42
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) |