Metamath Proof Explorer


Theorem rfcnpre1

Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses rfcnpre1.1 𝑥 𝐵
rfcnpre1.2 𝑥 𝐹
rfcnpre1.3 𝑥 𝜑
rfcnpre1.4 𝐾 = ( topGen ‘ ran (,) )
rfcnpre1.5 𝑋 = 𝐽
rfcnpre1.6 𝐴 = { 𝑥𝑋𝐵 < ( 𝐹𝑥 ) }
rfcnpre1.7 ( 𝜑𝐵 ∈ ℝ* )
rfcnpre1.8 ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
Assertion rfcnpre1 ( 𝜑𝐴𝐽 )

Proof

Step Hyp Ref Expression
1 rfcnpre1.1 𝑥 𝐵
2 rfcnpre1.2 𝑥 𝐹
3 rfcnpre1.3 𝑥 𝜑
4 rfcnpre1.4 𝐾 = ( topGen ‘ ran (,) )
5 rfcnpre1.5 𝑋 = 𝐽
6 rfcnpre1.6 𝐴 = { 𝑥𝑋𝐵 < ( 𝐹𝑥 ) }
7 rfcnpre1.7 ( 𝜑𝐵 ∈ ℝ* )
8 rfcnpre1.8 ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
9 2 nfcnv 𝑥 𝐹
10 nfcv 𝑥 (,)
11 nfcv 𝑥 +∞
12 1 10 11 nfov 𝑥 ( 𝐵 (,) +∞ )
13 9 12 nfima 𝑥 ( 𝐹 “ ( 𝐵 (,) +∞ ) )
14 nfrab1 𝑥 { 𝑥𝑋𝐵 < ( 𝐹𝑥 ) }
15 cntop1 ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top )
16 8 15 syl ( 𝜑𝐽 ∈ Top )
17 istopon ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = 𝐽 ) )
18 16 5 17 sylanblrc ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
19 retopon ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ )
20 4 19 eqeltri 𝐾 ∈ ( TopOn ‘ ℝ )
21 iscn ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ℝ ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ ℝ ∧ ∀ 𝑦𝐾 ( 𝐹𝑦 ) ∈ 𝐽 ) ) )
22 18 20 21 sylancl ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ ℝ ∧ ∀ 𝑦𝐾 ( 𝐹𝑦 ) ∈ 𝐽 ) ) )
23 8 22 mpbid ( 𝜑 → ( 𝐹 : 𝑋 ⟶ ℝ ∧ ∀ 𝑦𝐾 ( 𝐹𝑦 ) ∈ 𝐽 ) )
24 23 simpld ( 𝜑𝐹 : 𝑋 ⟶ ℝ )
25 24 ffvelrnda ( ( 𝜑𝑥𝑋 ) → ( 𝐹𝑥 ) ∈ ℝ )
26 elioopnf ( 𝐵 ∈ ℝ* → ( ( 𝐹𝑥 ) ∈ ( 𝐵 (,) +∞ ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ 𝐵 < ( 𝐹𝑥 ) ) ) )
27 7 26 syl ( 𝜑 → ( ( 𝐹𝑥 ) ∈ ( 𝐵 (,) +∞ ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ 𝐵 < ( 𝐹𝑥 ) ) ) )
28 27 baibd ( ( 𝜑 ∧ ( 𝐹𝑥 ) ∈ ℝ ) → ( ( 𝐹𝑥 ) ∈ ( 𝐵 (,) +∞ ) ↔ 𝐵 < ( 𝐹𝑥 ) ) )
29 25 28 syldan ( ( 𝜑𝑥𝑋 ) → ( ( 𝐹𝑥 ) ∈ ( 𝐵 (,) +∞ ) ↔ 𝐵 < ( 𝐹𝑥 ) ) )
30 29 pm5.32da ( 𝜑 → ( ( 𝑥𝑋 ∧ ( 𝐹𝑥 ) ∈ ( 𝐵 (,) +∞ ) ) ↔ ( 𝑥𝑋𝐵 < ( 𝐹𝑥 ) ) ) )
31 ffn ( 𝐹 : 𝑋 ⟶ ℝ → 𝐹 Fn 𝑋 )
32 elpreima ( 𝐹 Fn 𝑋 → ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 (,) +∞ ) ) ↔ ( 𝑥𝑋 ∧ ( 𝐹𝑥 ) ∈ ( 𝐵 (,) +∞ ) ) ) )
33 24 31 32 3syl ( 𝜑 → ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 (,) +∞ ) ) ↔ ( 𝑥𝑋 ∧ ( 𝐹𝑥 ) ∈ ( 𝐵 (,) +∞ ) ) ) )
34 rabid ( 𝑥 ∈ { 𝑥𝑋𝐵 < ( 𝐹𝑥 ) } ↔ ( 𝑥𝑋𝐵 < ( 𝐹𝑥 ) ) )
35 34 a1i ( 𝜑 → ( 𝑥 ∈ { 𝑥𝑋𝐵 < ( 𝐹𝑥 ) } ↔ ( 𝑥𝑋𝐵 < ( 𝐹𝑥 ) ) ) )
36 30 33 35 3bitr4d ( 𝜑 → ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 (,) +∞ ) ) ↔ 𝑥 ∈ { 𝑥𝑋𝐵 < ( 𝐹𝑥 ) } ) )
37 3 13 14 36 eqrd ( 𝜑 → ( 𝐹 “ ( 𝐵 (,) +∞ ) ) = { 𝑥𝑋𝐵 < ( 𝐹𝑥 ) } )
38 37 6 eqtr4di ( 𝜑 → ( 𝐹 “ ( 𝐵 (,) +∞ ) ) = 𝐴 )
39 iooretop ( 𝐵 (,) +∞ ) ∈ ( topGen ‘ ran (,) )
40 39 4 eleqtrri ( 𝐵 (,) +∞ ) ∈ 𝐾
41 cnima ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐵 (,) +∞ ) ∈ 𝐾 ) → ( 𝐹 “ ( 𝐵 (,) +∞ ) ) ∈ 𝐽 )
42 8 40 41 sylancl ( 𝜑 → ( 𝐹 “ ( 𝐵 (,) +∞ ) ) ∈ 𝐽 )
43 38 42 eqeltrrd ( 𝜑𝐴𝐽 )