Step |
Hyp |
Ref |
Expression |
1 |
|
rfcnpre2.1 |
⊢ Ⅎ 𝑥 𝐵 |
2 |
|
rfcnpre2.2 |
⊢ Ⅎ 𝑥 𝐹 |
3 |
|
rfcnpre2.3 |
⊢ Ⅎ 𝑥 𝜑 |
4 |
|
rfcnpre2.4 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
5 |
|
rfcnpre2.5 |
⊢ 𝑋 = ∪ 𝐽 |
6 |
|
rfcnpre2.6 |
⊢ 𝐴 = { 𝑥 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } |
7 |
|
rfcnpre2.7 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
8 |
|
rfcnpre2.8 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
9 |
2
|
nfcnv |
⊢ Ⅎ 𝑥 ◡ 𝐹 |
10 |
|
nfcv |
⊢ Ⅎ 𝑥 -∞ |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 (,) |
12 |
10 11 1
|
nfov |
⊢ Ⅎ 𝑥 ( -∞ (,) 𝐵 ) |
13 |
9 12
|
nfima |
⊢ Ⅎ 𝑥 ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) |
14 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } |
15 |
|
eqid |
⊢ ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn 𝐾 ) |
16 |
4 5 15 8
|
fcnre |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
17 |
16
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
18 |
|
elioomnf |
⊢ ( 𝐵 ∈ ℝ* → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝐵 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) ) |
19 |
7 18
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝐵 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) ) |
20 |
19
|
baibd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝐵 ) ↔ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) |
21 |
17 20
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝐵 ) ↔ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) |
22 |
21
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝐵 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) ) |
23 |
|
ffn |
⊢ ( 𝐹 : 𝑋 ⟶ ℝ → 𝐹 Fn 𝑋 ) |
24 |
|
elpreima |
⊢ ( 𝐹 Fn 𝑋 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝐵 ) ) ) ) |
25 |
16 23 24
|
3syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝐵 ) ) ) ) |
26 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) |
27 |
26
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) ) |
28 |
22 25 27
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ↔ 𝑥 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } ) ) |
29 |
3 13 14 28
|
eqrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) = { 𝑥 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } ) |
30 |
29 6
|
eqtr4di |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) = 𝐴 ) |
31 |
|
iooretop |
⊢ ( -∞ (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) |
32 |
31
|
a1i |
⊢ ( 𝜑 → ( -∞ (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ) |
33 |
32 4
|
eleqtrrdi |
⊢ ( 𝜑 → ( -∞ (,) 𝐵 ) ∈ 𝐾 ) |
34 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( -∞ (,) 𝐵 ) ∈ 𝐾 ) → ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ∈ 𝐽 ) |
35 |
8 33 34
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ∈ 𝐽 ) |
36 |
30 35
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) |