Metamath Proof Explorer


Theorem rfcnpre3

Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses rfcnpre3.2 𝑡 𝐹
rfcnpre3.3 𝐾 = ( topGen ‘ ran (,) )
rfcnpre3.4 𝑇 = 𝐽
rfcnpre3.5 𝐴 = { 𝑡𝑇𝐵 ≤ ( 𝐹𝑡 ) }
rfcnpre3.6 ( 𝜑𝐵 ∈ ℝ )
rfcnpre3.8 ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
Assertion rfcnpre3 ( 𝜑𝐴 ∈ ( Clsd ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 rfcnpre3.2 𝑡 𝐹
2 rfcnpre3.3 𝐾 = ( topGen ‘ ran (,) )
3 rfcnpre3.4 𝑇 = 𝐽
4 rfcnpre3.5 𝐴 = { 𝑡𝑇𝐵 ≤ ( 𝐹𝑡 ) }
5 rfcnpre3.6 ( 𝜑𝐵 ∈ ℝ )
6 rfcnpre3.8 ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
7 eqid ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn 𝐾 )
8 2 3 7 6 fcnre ( 𝜑𝐹 : 𝑇 ⟶ ℝ )
9 ffn ( 𝐹 : 𝑇 ⟶ ℝ → 𝐹 Fn 𝑇 )
10 elpreima ( 𝐹 Fn 𝑇 → ( 𝑠 ∈ ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ↔ ( 𝑠𝑇 ∧ ( 𝐹𝑠 ) ∈ ( 𝐵 [,) +∞ ) ) ) )
11 8 9 10 3syl ( 𝜑 → ( 𝑠 ∈ ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ↔ ( 𝑠𝑇 ∧ ( 𝐹𝑠 ) ∈ ( 𝐵 [,) +∞ ) ) ) )
12 5 rexrd ( 𝜑𝐵 ∈ ℝ* )
13 12 adantr ( ( 𝜑𝑠𝑇 ) → 𝐵 ∈ ℝ* )
14 pnfxr +∞ ∈ ℝ*
15 elico1 ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝐹𝑠 ) ∈ ( 𝐵 [,) +∞ ) ↔ ( ( 𝐹𝑠 ) ∈ ℝ*𝐵 ≤ ( 𝐹𝑠 ) ∧ ( 𝐹𝑠 ) < +∞ ) ) )
16 13 14 15 sylancl ( ( 𝜑𝑠𝑇 ) → ( ( 𝐹𝑠 ) ∈ ( 𝐵 [,) +∞ ) ↔ ( ( 𝐹𝑠 ) ∈ ℝ*𝐵 ≤ ( 𝐹𝑠 ) ∧ ( 𝐹𝑠 ) < +∞ ) ) )
17 simpr2 ( ( ( 𝜑𝑠𝑇 ) ∧ ( ( 𝐹𝑠 ) ∈ ℝ*𝐵 ≤ ( 𝐹𝑠 ) ∧ ( 𝐹𝑠 ) < +∞ ) ) → 𝐵 ≤ ( 𝐹𝑠 ) )
18 8 ffvelrnda ( ( 𝜑𝑠𝑇 ) → ( 𝐹𝑠 ) ∈ ℝ )
19 18 rexrd ( ( 𝜑𝑠𝑇 ) → ( 𝐹𝑠 ) ∈ ℝ* )
20 19 adantr ( ( ( 𝜑𝑠𝑇 ) ∧ 𝐵 ≤ ( 𝐹𝑠 ) ) → ( 𝐹𝑠 ) ∈ ℝ* )
21 simpr ( ( ( 𝜑𝑠𝑇 ) ∧ 𝐵 ≤ ( 𝐹𝑠 ) ) → 𝐵 ≤ ( 𝐹𝑠 ) )
22 18 adantr ( ( ( 𝜑𝑠𝑇 ) ∧ 𝐵 ≤ ( 𝐹𝑠 ) ) → ( 𝐹𝑠 ) ∈ ℝ )
23 ltpnf ( ( 𝐹𝑠 ) ∈ ℝ → ( 𝐹𝑠 ) < +∞ )
24 22 23 syl ( ( ( 𝜑𝑠𝑇 ) ∧ 𝐵 ≤ ( 𝐹𝑠 ) ) → ( 𝐹𝑠 ) < +∞ )
25 20 21 24 3jca ( ( ( 𝜑𝑠𝑇 ) ∧ 𝐵 ≤ ( 𝐹𝑠 ) ) → ( ( 𝐹𝑠 ) ∈ ℝ*𝐵 ≤ ( 𝐹𝑠 ) ∧ ( 𝐹𝑠 ) < +∞ ) )
26 17 25 impbida ( ( 𝜑𝑠𝑇 ) → ( ( ( 𝐹𝑠 ) ∈ ℝ*𝐵 ≤ ( 𝐹𝑠 ) ∧ ( 𝐹𝑠 ) < +∞ ) ↔ 𝐵 ≤ ( 𝐹𝑠 ) ) )
27 16 26 bitrd ( ( 𝜑𝑠𝑇 ) → ( ( 𝐹𝑠 ) ∈ ( 𝐵 [,) +∞ ) ↔ 𝐵 ≤ ( 𝐹𝑠 ) ) )
28 27 pm5.32da ( 𝜑 → ( ( 𝑠𝑇 ∧ ( 𝐹𝑠 ) ∈ ( 𝐵 [,) +∞ ) ) ↔ ( 𝑠𝑇𝐵 ≤ ( 𝐹𝑠 ) ) ) )
29 11 28 bitrd ( 𝜑 → ( 𝑠 ∈ ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ↔ ( 𝑠𝑇𝐵 ≤ ( 𝐹𝑠 ) ) ) )
30 nfcv 𝑡 𝑠
31 nfcv 𝑡 𝑇
32 nfcv 𝑡 𝐵
33 nfcv 𝑡
34 1 30 nffv 𝑡 ( 𝐹𝑠 )
35 32 33 34 nfbr 𝑡 𝐵 ≤ ( 𝐹𝑠 )
36 fveq2 ( 𝑡 = 𝑠 → ( 𝐹𝑡 ) = ( 𝐹𝑠 ) )
37 36 breq2d ( 𝑡 = 𝑠 → ( 𝐵 ≤ ( 𝐹𝑡 ) ↔ 𝐵 ≤ ( 𝐹𝑠 ) ) )
38 30 31 35 37 elrabf ( 𝑠 ∈ { 𝑡𝑇𝐵 ≤ ( 𝐹𝑡 ) } ↔ ( 𝑠𝑇𝐵 ≤ ( 𝐹𝑠 ) ) )
39 29 38 bitr4di ( 𝜑 → ( 𝑠 ∈ ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ↔ 𝑠 ∈ { 𝑡𝑇𝐵 ≤ ( 𝐹𝑡 ) } ) )
40 39 eqrdv ( 𝜑 → ( 𝐹 “ ( 𝐵 [,) +∞ ) ) = { 𝑡𝑇𝐵 ≤ ( 𝐹𝑡 ) } )
41 40 4 eqtr4di ( 𝜑 → ( 𝐹 “ ( 𝐵 [,) +∞ ) ) = 𝐴 )
42 icopnfcld ( 𝐵 ∈ ℝ → ( 𝐵 [,) +∞ ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) )
43 5 42 syl ( 𝜑 → ( 𝐵 [,) +∞ ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) )
44 2 fveq2i ( Clsd ‘ 𝐾 ) = ( Clsd ‘ ( topGen ‘ ran (,) ) )
45 43 44 eleqtrrdi ( 𝜑 → ( 𝐵 [,) +∞ ) ∈ ( Clsd ‘ 𝐾 ) )
46 cnclima ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐵 [,) +∞ ) ∈ ( Clsd ‘ 𝐾 ) ) → ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∈ ( Clsd ‘ 𝐽 ) )
47 6 45 46 syl2anc ( 𝜑 → ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∈ ( Clsd ‘ 𝐽 ) )
48 41 47 eqeltrrd ( 𝜑𝐴 ∈ ( Clsd ‘ 𝐽 ) )