| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 2 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
| 3 |
1 2
|
ax-mp |
⊢ ℂfld ∈ CMnd |
| 4 |
|
rege0subm |
⊢ ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) |
| 5 |
|
eqid |
⊢ ( ℂfld ↾s ( 0 [,) +∞ ) ) = ( ℂfld ↾s ( 0 [,) +∞ ) ) |
| 6 |
5
|
submcmn |
⊢ ( ( ℂfld ∈ CMnd ∧ ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) ) → ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ CMnd ) |
| 7 |
3 4 6
|
mp2an |
⊢ ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ CMnd |
| 8 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 9 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 10 |
8 9
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 11 |
|
1re |
⊢ 1 ∈ ℝ |
| 12 |
|
0le1 |
⊢ 0 ≤ 1 |
| 13 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
| 14 |
11 13
|
ax-mp |
⊢ 1 < +∞ |
| 15 |
|
0re |
⊢ 0 ∈ ℝ |
| 16 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 17 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 1 ∈ ( 0 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞ ) ) ) |
| 18 |
15 16 17
|
mp2an |
⊢ ( 1 ∈ ( 0 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞ ) ) |
| 19 |
11 12 14 18
|
mpbir3an |
⊢ 1 ∈ ( 0 [,) +∞ ) |
| 20 |
|
ge0mulcl |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 21 |
20
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ∀ 𝑦 ∈ ( 0 [,) +∞ ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) |
| 22 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 23 |
22
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
| 24 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 25 |
22 24
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 26 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 27 |
22 26
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
| 28 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 29 |
22 28
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 30 |
25 27 29
|
issubm |
⊢ ( ( mulGrp ‘ ℂfld ) ∈ Mnd → ( ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ( 0 [,) +∞ ) ⊆ ℂ ∧ 1 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ∀ 𝑦 ∈ ( 0 [,) +∞ ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) ) ) |
| 31 |
1 23 30
|
mp2b |
⊢ ( ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ( 0 [,) +∞ ) ⊆ ℂ ∧ 1 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ∀ 𝑦 ∈ ( 0 [,) +∞ ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) ) |
| 32 |
10 19 21 31
|
mpbir3an |
⊢ ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) |
| 33 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) |
| 34 |
33
|
submmnd |
⊢ ( ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) → ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) ∈ Mnd ) |
| 35 |
32 34
|
ax-mp |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) ∈ Mnd |
| 36 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑥 ∈ ( 0 [,) +∞ ) ) |
| 37 |
10 36
|
sselid |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑥 ∈ ℂ ) |
| 38 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑦 ∈ ( 0 [,) +∞ ) ) |
| 39 |
10 38
|
sselid |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑦 ∈ ℂ ) |
| 40 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑧 ∈ ( 0 [,) +∞ ) ) |
| 41 |
10 40
|
sselid |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑧 ∈ ℂ ) |
| 42 |
37 39 41
|
adddid |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 43 |
37 39 41
|
adddird |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 44 |
42 43
|
jca |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 45 |
44
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 46 |
45
|
ralrimiva |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 47 |
10
|
sseli |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → 𝑥 ∈ ℂ ) |
| 48 |
47
|
mul02d |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → ( 0 · 𝑥 ) = 0 ) |
| 49 |
47
|
mul01d |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → ( 𝑥 · 0 ) = 0 ) |
| 50 |
46 48 49
|
jca32 |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → ( ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) |
| 51 |
50
|
rgen |
⊢ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ( ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) |
| 52 |
5 24
|
ressbas2 |
⊢ ( ( 0 [,) +∞ ) ⊆ ℂ → ( 0 [,) +∞ ) = ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 53 |
10 52
|
ax-mp |
⊢ ( 0 [,) +∞ ) = ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
| 54 |
|
cnfldex |
⊢ ℂfld ∈ V |
| 55 |
|
ovex |
⊢ ( 0 [,) +∞ ) ∈ V |
| 56 |
5 22
|
mgpress |
⊢ ( ( ℂfld ∈ V ∧ ( 0 [,) +∞ ) ∈ V ) → ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) = ( mulGrp ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 57 |
54 55 56
|
mp2an |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) = ( mulGrp ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
| 58 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 59 |
5 58
|
ressplusg |
⊢ ( ( 0 [,) +∞ ) ∈ V → + = ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 60 |
55 59
|
ax-mp |
⊢ + = ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
| 61 |
5 28
|
ressmulr |
⊢ ( ( 0 [,) +∞ ) ∈ V → · = ( .r ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 62 |
55 61
|
ax-mp |
⊢ · = ( .r ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
| 63 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
| 64 |
1 63
|
ax-mp |
⊢ ℂfld ∈ Mnd |
| 65 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
| 66 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 67 |
5 24 66
|
ress0g |
⊢ ( ( ℂfld ∈ Mnd ∧ 0 ∈ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℂ ) → 0 = ( 0g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 68 |
64 65 10 67
|
mp3an |
⊢ 0 = ( 0g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
| 69 |
53 57 60 62 68
|
issrg |
⊢ ( ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ SRing ↔ ( ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ CMnd ∧ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) ∈ Mnd ∧ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ( ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) |
| 70 |
7 35 51 69
|
mpbir3an |
⊢ ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ SRing |