Step |
Hyp |
Ref |
Expression |
1 |
|
cnring |
⊢ ℂfld ∈ Ring |
2 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
3 |
1 2
|
ax-mp |
⊢ ℂfld ∈ CMnd |
4 |
|
rege0subm |
⊢ ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) |
5 |
|
eqid |
⊢ ( ℂfld ↾s ( 0 [,) +∞ ) ) = ( ℂfld ↾s ( 0 [,) +∞ ) ) |
6 |
5
|
submcmn |
⊢ ( ( ℂfld ∈ CMnd ∧ ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) ) → ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ CMnd ) |
7 |
3 4 6
|
mp2an |
⊢ ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ CMnd |
8 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
9 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
10 |
8 9
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
11 |
|
1re |
⊢ 1 ∈ ℝ |
12 |
|
0le1 |
⊢ 0 ≤ 1 |
13 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
14 |
11 13
|
ax-mp |
⊢ 1 < +∞ |
15 |
|
0re |
⊢ 0 ∈ ℝ |
16 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
17 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 1 ∈ ( 0 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞ ) ) ) |
18 |
15 16 17
|
mp2an |
⊢ ( 1 ∈ ( 0 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞ ) ) |
19 |
11 12 14 18
|
mpbir3an |
⊢ 1 ∈ ( 0 [,) +∞ ) |
20 |
|
ge0mulcl |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
21 |
20
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ∀ 𝑦 ∈ ( 0 [,) +∞ ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) |
22 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
23 |
22
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
24 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
25 |
22 24
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
26 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
27 |
22 26
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
28 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
29 |
22 28
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
30 |
25 27 29
|
issubm |
⊢ ( ( mulGrp ‘ ℂfld ) ∈ Mnd → ( ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ( 0 [,) +∞ ) ⊆ ℂ ∧ 1 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ∀ 𝑦 ∈ ( 0 [,) +∞ ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) ) ) |
31 |
1 23 30
|
mp2b |
⊢ ( ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ( 0 [,) +∞ ) ⊆ ℂ ∧ 1 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ∀ 𝑦 ∈ ( 0 [,) +∞ ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) ) |
32 |
10 19 21 31
|
mpbir3an |
⊢ ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) |
33 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) |
34 |
33
|
submmnd |
⊢ ( ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) → ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) ∈ Mnd ) |
35 |
32 34
|
ax-mp |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) ∈ Mnd |
36 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑥 ∈ ( 0 [,) +∞ ) ) |
37 |
10 36
|
sselid |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑥 ∈ ℂ ) |
38 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑦 ∈ ( 0 [,) +∞ ) ) |
39 |
10 38
|
sselid |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑦 ∈ ℂ ) |
40 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑧 ∈ ( 0 [,) +∞ ) ) |
41 |
10 40
|
sselid |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑧 ∈ ℂ ) |
42 |
37 39 41
|
adddid |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
43 |
37 39 41
|
adddird |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
44 |
42 43
|
jca |
⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
45 |
44
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
46 |
45
|
ralrimiva |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
47 |
10
|
sseli |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → 𝑥 ∈ ℂ ) |
48 |
47
|
mul02d |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → ( 0 · 𝑥 ) = 0 ) |
49 |
47
|
mul01d |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → ( 𝑥 · 0 ) = 0 ) |
50 |
46 48 49
|
jca32 |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → ( ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) |
51 |
50
|
rgen |
⊢ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ( ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) |
52 |
5 24
|
ressbas2 |
⊢ ( ( 0 [,) +∞ ) ⊆ ℂ → ( 0 [,) +∞ ) = ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
53 |
10 52
|
ax-mp |
⊢ ( 0 [,) +∞ ) = ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
54 |
|
cnfldex |
⊢ ℂfld ∈ V |
55 |
|
ovex |
⊢ ( 0 [,) +∞ ) ∈ V |
56 |
5 22
|
mgpress |
⊢ ( ( ℂfld ∈ V ∧ ( 0 [,) +∞ ) ∈ V ) → ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) = ( mulGrp ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
57 |
54 55 56
|
mp2an |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) = ( mulGrp ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
58 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
59 |
5 58
|
ressplusg |
⊢ ( ( 0 [,) +∞ ) ∈ V → + = ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
60 |
55 59
|
ax-mp |
⊢ + = ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
61 |
5 28
|
ressmulr |
⊢ ( ( 0 [,) +∞ ) ∈ V → · = ( .r ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
62 |
55 61
|
ax-mp |
⊢ · = ( .r ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
63 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
64 |
1 63
|
ax-mp |
⊢ ℂfld ∈ Mnd |
65 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
66 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
67 |
5 24 66
|
ress0g |
⊢ ( ( ℂfld ∈ Mnd ∧ 0 ∈ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℂ ) → 0 = ( 0g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
68 |
64 65 10 67
|
mp3an |
⊢ 0 = ( 0g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
69 |
53 57 60 62 68
|
issrg |
⊢ ( ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ SRing ↔ ( ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ CMnd ∧ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) ∈ Mnd ∧ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ( ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) |
70 |
7 35 51 69
|
mpbir3an |
⊢ ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ SRing |