Metamath Proof Explorer


Theorem rge0srg

Description: The nonnegative real numbers form a semiring (commutative by subcmn ). (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Assertion rge0srg ( ℂflds ( 0 [,) +∞ ) ) ∈ SRing

Proof

Step Hyp Ref Expression
1 cnring fld ∈ Ring
2 ringcmn ( ℂfld ∈ Ring → ℂfld ∈ CMnd )
3 1 2 ax-mp fld ∈ CMnd
4 rege0subm ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld )
5 eqid ( ℂflds ( 0 [,) +∞ ) ) = ( ℂflds ( 0 [,) +∞ ) )
6 5 submcmn ( ( ℂfld ∈ CMnd ∧ ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) ) → ( ℂflds ( 0 [,) +∞ ) ) ∈ CMnd )
7 3 4 6 mp2an ( ℂflds ( 0 [,) +∞ ) ) ∈ CMnd
8 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
9 ax-resscn ℝ ⊆ ℂ
10 8 9 sstri ( 0 [,) +∞ ) ⊆ ℂ
11 1re 1 ∈ ℝ
12 0le1 0 ≤ 1
13 ltpnf ( 1 ∈ ℝ → 1 < +∞ )
14 11 13 ax-mp 1 < +∞
15 0re 0 ∈ ℝ
16 pnfxr +∞ ∈ ℝ*
17 elico2 ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 1 ∈ ( 0 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞ ) ) )
18 15 16 17 mp2an ( 1 ∈ ( 0 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞ ) )
19 11 12 14 18 mpbir3an 1 ∈ ( 0 [,) +∞ )
20 ge0mulcl ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) )
21 20 rgen2 𝑥 ∈ ( 0 [,) +∞ ) ∀ 𝑦 ∈ ( 0 [,) +∞ ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ )
22 eqid ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld )
23 22 ringmgp ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd )
24 cnfldbas ℂ = ( Base ‘ ℂfld )
25 22 24 mgpbas ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) )
26 cnfld1 1 = ( 1r ‘ ℂfld )
27 22 26 ringidval 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) )
28 cnfldmul · = ( .r ‘ ℂfld )
29 22 28 mgpplusg · = ( +g ‘ ( mulGrp ‘ ℂfld ) )
30 25 27 29 issubm ( ( mulGrp ‘ ℂfld ) ∈ Mnd → ( ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ( 0 [,) +∞ ) ⊆ ℂ ∧ 1 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ∀ 𝑦 ∈ ( 0 [,) +∞ ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) ) )
31 1 23 30 mp2b ( ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ( 0 [,) +∞ ) ⊆ ℂ ∧ 1 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ∀ 𝑦 ∈ ( 0 [,) +∞ ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) )
32 10 19 21 31 mpbir3an ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) )
33 eqid ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) )
34 33 submmnd ( ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) → ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) ∈ Mnd )
35 32 34 ax-mp ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) ∈ Mnd
36 simpll ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑥 ∈ ( 0 [,) +∞ ) )
37 10 36 sselid ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑥 ∈ ℂ )
38 simplr ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑦 ∈ ( 0 [,) +∞ ) )
39 10 38 sselid ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑦 ∈ ℂ )
40 simpr ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑧 ∈ ( 0 [,) +∞ ) )
41 10 40 sselid ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑧 ∈ ℂ )
42 37 39 41 adddid ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) )
43 37 39 41 adddird ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) )
44 42 43 jca ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) )
45 44 ralrimiva ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) )
46 45 ralrimiva ( 𝑥 ∈ ( 0 [,) +∞ ) → ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) )
47 10 sseli ( 𝑥 ∈ ( 0 [,) +∞ ) → 𝑥 ∈ ℂ )
48 47 mul02d ( 𝑥 ∈ ( 0 [,) +∞ ) → ( 0 · 𝑥 ) = 0 )
49 47 mul01d ( 𝑥 ∈ ( 0 [,) +∞ ) → ( 𝑥 · 0 ) = 0 )
50 46 48 49 jca32 ( 𝑥 ∈ ( 0 [,) +∞ ) → ( ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) )
51 50 rgen 𝑥 ∈ ( 0 [,) +∞ ) ( ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) )
52 5 24 ressbas2 ( ( 0 [,) +∞ ) ⊆ ℂ → ( 0 [,) +∞ ) = ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
53 10 52 ax-mp ( 0 [,) +∞ ) = ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) )
54 cnfldex fld ∈ V
55 ovex ( 0 [,) +∞ ) ∈ V
56 5 22 mgpress ( ( ℂfld ∈ V ∧ ( 0 [,) +∞ ) ∈ V ) → ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) = ( mulGrp ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
57 54 55 56 mp2an ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) = ( mulGrp ‘ ( ℂflds ( 0 [,) +∞ ) ) )
58 cnfldadd + = ( +g ‘ ℂfld )
59 5 58 ressplusg ( ( 0 [,) +∞ ) ∈ V → + = ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
60 55 59 ax-mp + = ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) )
61 5 28 ressmulr ( ( 0 [,) +∞ ) ∈ V → · = ( .r ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
62 55 61 ax-mp · = ( .r ‘ ( ℂflds ( 0 [,) +∞ ) ) )
63 ringmnd ( ℂfld ∈ Ring → ℂfld ∈ Mnd )
64 1 63 ax-mp fld ∈ Mnd
65 0e0icopnf 0 ∈ ( 0 [,) +∞ )
66 cnfld0 0 = ( 0g ‘ ℂfld )
67 5 24 66 ress0g ( ( ℂfld ∈ Mnd ∧ 0 ∈ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℂ ) → 0 = ( 0g ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
68 64 65 10 67 mp3an 0 = ( 0g ‘ ( ℂflds ( 0 [,) +∞ ) ) )
69 53 57 60 62 68 issrg ( ( ℂflds ( 0 [,) +∞ ) ) ∈ SRing ↔ ( ( ℂflds ( 0 [,) +∞ ) ) ∈ CMnd ∧ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) ∈ Mnd ∧ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ( ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) )
70 7 35 51 69 mpbir3an ( ℂflds ( 0 [,) +∞ ) ) ∈ SRing