Description: Nonnegative real numbers are real numbers. (Contributed by Thierry Arnoux, 9-Sep-2018) (Proof shortened by AV, 8-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrege0 | ⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → 𝑥 ∈ ℝ ) |
| 3 | 2 | ssriv | ⊢ ( 0 [,) +∞ ) ⊆ ℝ |