| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rgen2a.1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝜑 ) |
| 2 |
|
eleq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
| 3 |
2
|
dvelimv |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 𝑥 ∈ 𝐴 ) ) |
| 4 |
1
|
ex |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐴 → 𝜑 ) ) |
| 5 |
4
|
alimi |
⊢ ( ∀ 𝑦 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜑 ) ) |
| 6 |
3 5
|
syl6com |
⊢ ( 𝑥 ∈ 𝐴 → ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜑 ) ) ) |
| 7 |
|
eleq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
| 8 |
7
|
biimpd |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
| 9 |
8 4
|
syli |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 → 𝜑 ) ) |
| 10 |
9
|
alimi |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜑 ) ) |
| 11 |
6 10
|
pm2.61d2 |
⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜑 ) ) |
| 12 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜑 ) ) |
| 13 |
11 12
|
sylibr |
⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 𝜑 ) |
| 14 |
13
|
rgen |
⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 |