Description: Generalization rule for restricted quantification, with three quantifiers. (Contributed by NM, 12-Jan-2008)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rgen3.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → 𝜑 ) | |
Assertion | rgen3 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen3.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → 𝜑 ) | |
2 | 1 | 3expa | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) → 𝜑 ) |
3 | 2 | ralrimiva | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐶 𝜑 ) |
4 | 3 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 |