Metamath Proof Explorer


Theorem rgen3

Description: Generalization rule for restricted quantification, with three quantifiers. (Contributed by NM, 12-Jan-2008)

Ref Expression
Hypothesis rgen3.1 ( ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) → 𝜑 )
Assertion rgen3 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑

Proof

Step Hyp Ref Expression
1 rgen3.1 ( ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) → 𝜑 )
2 1 3expa ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧𝐶 ) → 𝜑 )
3 2 ralrimiva ( ( 𝑥𝐴𝑦𝐵 ) → ∀ 𝑧𝐶 𝜑 )
4 3 rgen2 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑