Step |
Hyp |
Ref |
Expression |
1 |
|
o2timesd.e |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
2 |
|
o2timesd.u |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
3 |
|
o2timesd.i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) |
4 |
|
o2timesd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
rglcom4d.a |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
6 |
|
rglcom4d.d |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
7 |
|
rglcom4d.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
2 2
|
jca |
⊢ ( 𝜑 → ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 + 𝑦 ) = ( 1 + 𝑦 ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ( 1 + 𝑦 ) ∈ 𝐵 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑦 = 1 → ( 1 + 𝑦 ) = ( 1 + 1 ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝑦 = 1 → ( ( 1 + 𝑦 ) ∈ 𝐵 ↔ ( 1 + 1 ) ∈ 𝐵 ) ) |
13 |
10 12
|
rspc2v |
⊢ ( ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 → ( 1 + 1 ) ∈ 𝐵 ) ) |
14 |
8 5 13
|
sylc |
⊢ ( 𝜑 → ( 1 + 1 ) ∈ 𝐵 ) |
15 |
14 4 7
|
3jca |
⊢ ( 𝜑 → ( ( 1 + 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
16 |
|
oveq1 |
⊢ ( 𝑥 = ( 1 + 1 ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 1 + 1 ) · ( 𝑦 + 𝑧 ) ) ) |
17 |
|
oveq1 |
⊢ ( 𝑥 = ( 1 + 1 ) → ( 𝑥 · 𝑦 ) = ( ( 1 + 1 ) · 𝑦 ) ) |
18 |
|
oveq1 |
⊢ ( 𝑥 = ( 1 + 1 ) → ( 𝑥 · 𝑧 ) = ( ( 1 + 1 ) · 𝑧 ) ) |
19 |
17 18
|
oveq12d |
⊢ ( 𝑥 = ( 1 + 1 ) → ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) = ( ( ( 1 + 1 ) · 𝑦 ) + ( ( 1 + 1 ) · 𝑧 ) ) ) |
20 |
16 19
|
eqeq12d |
⊢ ( 𝑥 = ( 1 + 1 ) → ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ↔ ( ( 1 + 1 ) · ( 𝑦 + 𝑧 ) ) = ( ( ( 1 + 1 ) · 𝑦 ) + ( ( 1 + 1 ) · 𝑧 ) ) ) ) |
21 |
|
oveq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 + 𝑧 ) = ( 𝑋 + 𝑧 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝑦 = 𝑋 → ( ( 1 + 1 ) · ( 𝑦 + 𝑧 ) ) = ( ( 1 + 1 ) · ( 𝑋 + 𝑧 ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝑦 = 𝑋 → ( ( 1 + 1 ) · 𝑦 ) = ( ( 1 + 1 ) · 𝑋 ) ) |
24 |
23
|
oveq1d |
⊢ ( 𝑦 = 𝑋 → ( ( ( 1 + 1 ) · 𝑦 ) + ( ( 1 + 1 ) · 𝑧 ) ) = ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑧 ) ) ) |
25 |
22 24
|
eqeq12d |
⊢ ( 𝑦 = 𝑋 → ( ( ( 1 + 1 ) · ( 𝑦 + 𝑧 ) ) = ( ( ( 1 + 1 ) · 𝑦 ) + ( ( 1 + 1 ) · 𝑧 ) ) ↔ ( ( 1 + 1 ) · ( 𝑋 + 𝑧 ) ) = ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑧 ) ) ) ) |
26 |
|
oveq2 |
⊢ ( 𝑧 = 𝑌 → ( 𝑋 + 𝑧 ) = ( 𝑋 + 𝑌 ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝑧 = 𝑌 → ( ( 1 + 1 ) · ( 𝑋 + 𝑧 ) ) = ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) ) |
28 |
|
oveq2 |
⊢ ( 𝑧 = 𝑌 → ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 + 1 ) · 𝑌 ) ) |
29 |
28
|
oveq2d |
⊢ ( 𝑧 = 𝑌 → ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑧 ) ) = ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑌 ) ) ) |
30 |
27 29
|
eqeq12d |
⊢ ( 𝑧 = 𝑌 → ( ( ( 1 + 1 ) · ( 𝑋 + 𝑧 ) ) = ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑧 ) ) ↔ ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) = ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑌 ) ) ) ) |
31 |
20 25 30
|
rspc3v |
⊢ ( ( ( 1 + 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) → ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) = ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑌 ) ) ) ) |
32 |
15 6 31
|
sylc |
⊢ ( 𝜑 → ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) = ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑌 ) ) ) |
33 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 + 𝑦 ) = ( 𝑋 + 𝑦 ) ) |
34 |
33
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑋 + 𝑦 ) ∈ 𝐵 ) ) |
35 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 + 𝑦 ) = ( 𝑋 + 𝑌 ) ) |
36 |
35
|
eleq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) ) |
37 |
34 36
|
rspc2va |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
38 |
4 7 5 37
|
syl21anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
39 |
2 2 38
|
3jca |
⊢ ( 𝜑 → ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) ) |
40 |
9
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 1 + 𝑦 ) · 𝑧 ) ) |
41 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 · 𝑧 ) = ( 1 · 𝑧 ) ) |
42 |
41
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) = ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
43 |
40 42
|
eqeq12d |
⊢ ( 𝑥 = 1 → ( ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ↔ ( ( 1 + 𝑦 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
44 |
11
|
oveq1d |
⊢ ( 𝑦 = 1 → ( ( 1 + 𝑦 ) · 𝑧 ) = ( ( 1 + 1 ) · 𝑧 ) ) |
45 |
|
oveq1 |
⊢ ( 𝑦 = 1 → ( 𝑦 · 𝑧 ) = ( 1 · 𝑧 ) ) |
46 |
45
|
oveq2d |
⊢ ( 𝑦 = 1 → ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) = ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) ) |
47 |
44 46
|
eqeq12d |
⊢ ( 𝑦 = 1 → ( ( ( 1 + 𝑦 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ↔ ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) ) ) |
48 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑋 + 𝑌 ) → ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) ) |
49 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑋 + 𝑌 ) → ( 1 · 𝑧 ) = ( 1 · ( 𝑋 + 𝑌 ) ) ) |
50 |
49 49
|
oveq12d |
⊢ ( 𝑧 = ( 𝑋 + 𝑌 ) → ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) = ( ( 1 · ( 𝑋 + 𝑌 ) ) + ( 1 · ( 𝑋 + 𝑌 ) ) ) ) |
51 |
48 50
|
eqeq12d |
⊢ ( 𝑧 = ( 𝑋 + 𝑌 ) → ( ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) ↔ ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) = ( ( 1 · ( 𝑋 + 𝑌 ) ) + ( 1 · ( 𝑋 + 𝑌 ) ) ) ) ) |
52 |
43 47 51
|
rspc3v |
⊢ ( ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) → ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) = ( ( 1 · ( 𝑋 + 𝑌 ) ) + ( 1 · ( 𝑋 + 𝑌 ) ) ) ) ) |
53 |
39 1 52
|
sylc |
⊢ ( 𝜑 → ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) = ( ( 1 · ( 𝑋 + 𝑌 ) ) + ( 1 · ( 𝑋 + 𝑌 ) ) ) ) |
54 |
32 53
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑌 ) ) = ( ( 1 · ( 𝑋 + 𝑌 ) ) + ( 1 · ( 𝑋 + 𝑌 ) ) ) ) |
55 |
1 2 3 4
|
o2timesd |
⊢ ( 𝜑 → ( 𝑋 + 𝑋 ) = ( ( 1 + 1 ) · 𝑋 ) ) |
56 |
55
|
eqcomd |
⊢ ( 𝜑 → ( ( 1 + 1 ) · 𝑋 ) = ( 𝑋 + 𝑋 ) ) |
57 |
1 2 3 7
|
o2timesd |
⊢ ( 𝜑 → ( 𝑌 + 𝑌 ) = ( ( 1 + 1 ) · 𝑌 ) ) |
58 |
57
|
eqcomd |
⊢ ( 𝜑 → ( ( 1 + 1 ) · 𝑌 ) = ( 𝑌 + 𝑌 ) ) |
59 |
56 58
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑌 ) ) = ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) ) |
60 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑋 + 𝑌 ) → ( 1 · 𝑥 ) = ( 1 · ( 𝑋 + 𝑌 ) ) ) |
61 |
|
id |
⊢ ( 𝑥 = ( 𝑋 + 𝑌 ) → 𝑥 = ( 𝑋 + 𝑌 ) ) |
62 |
60 61
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑋 + 𝑌 ) → ( ( 1 · 𝑥 ) = 𝑥 ↔ ( 1 · ( 𝑋 + 𝑌 ) ) = ( 𝑋 + 𝑌 ) ) ) |
63 |
62
|
rspcva |
⊢ ( ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) → ( 1 · ( 𝑋 + 𝑌 ) ) = ( 𝑋 + 𝑌 ) ) |
64 |
38 3 63
|
syl2anc |
⊢ ( 𝜑 → ( 1 · ( 𝑋 + 𝑌 ) ) = ( 𝑋 + 𝑌 ) ) |
65 |
64 64
|
oveq12d |
⊢ ( 𝜑 → ( ( 1 · ( 𝑋 + 𝑌 ) ) + ( 1 · ( 𝑋 + 𝑌 ) ) ) = ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ) |
66 |
54 59 65
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) = ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ) |