Metamath Proof Explorer


Theorem rgrprop

Description: The properties of a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Hypotheses isrgr.v 𝑉 = ( Vtx ‘ 𝐺 )
isrgr.d 𝐷 = ( VtxDeg ‘ 𝐺 )
Assertion rgrprop ( 𝐺 RegGraph 𝐾 → ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) )

Proof

Step Hyp Ref Expression
1 isrgr.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isrgr.d 𝐷 = ( VtxDeg ‘ 𝐺 )
3 df-rgr RegGraph = { ⟨ 𝑔 , 𝑘 ⟩ ∣ ( 𝑘 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 ) }
4 3 bropaex12 ( 𝐺 RegGraph 𝐾 → ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) )
5 1 2 isrgr ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝐺 RegGraph 𝐾 ↔ ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) ) )
6 5 biimpd ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝐺 RegGraph 𝐾 → ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) ) )
7 4 6 mpcom ( 𝐺 RegGraph 𝐾 → ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) )