Description: The properties of a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018) (Revised by AV, 26-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isrgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
isrgr.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | ||
Assertion | rgrprop | ⊢ ( 𝐺 RegGraph 𝐾 → ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
2 | isrgr.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | |
3 | df-rgr | ⊢ RegGraph = { 〈 𝑔 , 𝑘 〉 ∣ ( 𝑘 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 ) } | |
4 | 3 | bropaex12 | ⊢ ( 𝐺 RegGraph 𝐾 → ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) ) |
5 | 1 2 | isrgr | ⊢ ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝐺 RegGraph 𝐾 ↔ ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ) ) |
6 | 5 | biimpd | ⊢ ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝐺 RegGraph 𝐾 → ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ) ) |
7 | 4 6 | mpcom | ⊢ ( 𝐺 RegGraph 𝐾 → ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ) |