Metamath Proof Explorer
Description: The potentially alternatively defined k-regular graphs is not defined
for k=0. (Contributed by AV, 28-Dec-2020)
|
|
Ref |
Expression |
|
Hypothesis |
rgrx0ndm.u |
⊢ 𝑅 = ( 𝑘 ∈ ℕ0* ↦ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 } ) |
|
Assertion |
rgrx0nd |
⊢ ( 𝑅 ‘ 0 ) = ∅ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rgrx0ndm.u |
⊢ 𝑅 = ( 𝑘 ∈ ℕ0* ↦ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 } ) |
2 |
1
|
rgrx0ndm |
⊢ 0 ∉ dom 𝑅 |
3 |
2
|
neli |
⊢ ¬ 0 ∈ dom 𝑅 |
4 |
|
ndmfv |
⊢ ( ¬ 0 ∈ dom 𝑅 → ( 𝑅 ‘ 0 ) = ∅ ) |
5 |
3 4
|
ax-mp |
⊢ ( 𝑅 ‘ 0 ) = ∅ |