Metamath Proof Explorer


Theorem rgrx0nd

Description: The potentially alternatively defined k-regular graphs is not defined for k=0. (Contributed by AV, 28-Dec-2020)

Ref Expression
Hypothesis rgrx0ndm.u 𝑅 = ( 𝑘 ∈ ℕ0* ↦ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 } )
Assertion rgrx0nd ( 𝑅 ‘ 0 ) = ∅

Proof

Step Hyp Ref Expression
1 rgrx0ndm.u 𝑅 = ( 𝑘 ∈ ℕ0* ↦ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 } )
2 1 rgrx0ndm 0 ∉ dom 𝑅
3 2 neli ¬ 0 ∈ dom 𝑅
4 ndmfv ( ¬ 0 ∈ dom 𝑅 → ( 𝑅 ‘ 0 ) = ∅ )
5 3 4 ax-mp ( 𝑅 ‘ 0 ) = ∅