Step |
Hyp |
Ref |
Expression |
1 |
|
rgrx0ndm.u |
⊢ 𝑅 = ( 𝑘 ∈ ℕ0* ↦ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 } ) |
2 |
|
rgrprcx |
⊢ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V |
3 |
2
|
neli |
⊢ ¬ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∈ V |
4 |
3
|
intnan |
⊢ ¬ ( 0 ∈ ℕ0* ∧ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∈ V ) |
5 |
|
df-nel |
⊢ ( 0 ∉ dom 𝑅 ↔ ¬ 0 ∈ dom 𝑅 ) |
6 |
|
eqeq2 |
⊢ ( 𝑘 = 0 → ( ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 ↔ ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝑘 = 0 → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) |
8 |
7
|
abbidv |
⊢ ( 𝑘 = 0 → { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 } = { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ) |
9 |
8
|
eleq1d |
⊢ ( 𝑘 = 0 → ( { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 } ∈ V ↔ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∈ V ) ) |
10 |
1
|
dmmpt |
⊢ dom 𝑅 = { 𝑘 ∈ ℕ0* ∣ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 } ∈ V } |
11 |
9 10
|
elrab2 |
⊢ ( 0 ∈ dom 𝑅 ↔ ( 0 ∈ ℕ0* ∧ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∈ V ) ) |
12 |
5 11
|
xchbinx |
⊢ ( 0 ∉ dom 𝑅 ↔ ¬ ( 0 ∈ ℕ0* ∧ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∈ V ) ) |
13 |
4 12
|
mpbir |
⊢ 0 ∉ dom 𝑅 |