| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhm1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 2 |
|
rhm1.n |
⊢ 𝑁 = ( 1r ‘ 𝑆 ) |
| 3 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 4 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
| 5 |
3 4
|
rhmmhm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 7 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 8 |
6 7
|
mhm0 |
⊢ ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) ) |
| 9 |
5 8
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) ) |
| 10 |
3 1
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 11 |
10
|
fveq2i |
⊢ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 12 |
4 2
|
ringidval |
⊢ 𝑁 = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 13 |
9 11 12
|
3eqtr4g |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ 1 ) = 𝑁 ) |