| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmrcl2 | ⊢ ( 𝐹  ∈  ( 𝑇  RingHom  𝑈 )  →  𝑈  ∈  Ring ) | 
						
							| 2 |  | rhmrcl1 | ⊢ ( 𝐺  ∈  ( 𝑆  RingHom  𝑇 )  →  𝑆  ∈  Ring ) | 
						
							| 3 | 1 2 | anim12ci | ⊢ ( ( 𝐹  ∈  ( 𝑇  RingHom  𝑈 )  ∧  𝐺  ∈  ( 𝑆  RingHom  𝑇 ) )  →  ( 𝑆  ∈  Ring  ∧  𝑈  ∈  Ring ) ) | 
						
							| 4 |  | rhmghm | ⊢ ( 𝐹  ∈  ( 𝑇  RingHom  𝑈 )  →  𝐹  ∈  ( 𝑇  GrpHom  𝑈 ) ) | 
						
							| 5 |  | rhmghm | ⊢ ( 𝐺  ∈  ( 𝑆  RingHom  𝑇 )  →  𝐺  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 6 |  | ghmco | ⊢ ( ( 𝐹  ∈  ( 𝑇  GrpHom  𝑈 )  ∧  𝐺  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 𝐹  ∘  𝐺 )  ∈  ( 𝑆  GrpHom  𝑈 ) ) | 
						
							| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝑇  RingHom  𝑈 )  ∧  𝐺  ∈  ( 𝑆  RingHom  𝑇 ) )  →  ( 𝐹  ∘  𝐺 )  ∈  ( 𝑆  GrpHom  𝑈 ) ) | 
						
							| 8 |  | eqid | ⊢ ( mulGrp ‘ 𝑇 )  =  ( mulGrp ‘ 𝑇 ) | 
						
							| 9 |  | eqid | ⊢ ( mulGrp ‘ 𝑈 )  =  ( mulGrp ‘ 𝑈 ) | 
						
							| 10 | 8 9 | rhmmhm | ⊢ ( 𝐹  ∈  ( 𝑇  RingHom  𝑈 )  →  𝐹  ∈  ( ( mulGrp ‘ 𝑇 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( mulGrp ‘ 𝑆 )  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 12 | 11 8 | rhmmhm | ⊢ ( 𝐺  ∈  ( 𝑆  RingHom  𝑇 )  →  𝐺  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) | 
						
							| 13 |  | mhmco | ⊢ ( ( 𝐹  ∈  ( ( mulGrp ‘ 𝑇 )  MndHom  ( mulGrp ‘ 𝑈 ) )  ∧  𝐺  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) )  →  ( 𝐹  ∘  𝐺 )  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) | 
						
							| 14 | 10 12 13 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝑇  RingHom  𝑈 )  ∧  𝐺  ∈  ( 𝑆  RingHom  𝑇 ) )  →  ( 𝐹  ∘  𝐺 )  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) | 
						
							| 15 | 7 14 | jca | ⊢ ( ( 𝐹  ∈  ( 𝑇  RingHom  𝑈 )  ∧  𝐺  ∈  ( 𝑆  RingHom  𝑇 ) )  →  ( ( 𝐹  ∘  𝐺 )  ∈  ( 𝑆  GrpHom  𝑈 )  ∧  ( 𝐹  ∘  𝐺 )  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) ) | 
						
							| 16 | 11 9 | isrhm | ⊢ ( ( 𝐹  ∘  𝐺 )  ∈  ( 𝑆  RingHom  𝑈 )  ↔  ( ( 𝑆  ∈  Ring  ∧  𝑈  ∈  Ring )  ∧  ( ( 𝐹  ∘  𝐺 )  ∈  ( 𝑆  GrpHom  𝑈 )  ∧  ( 𝐹  ∘  𝐺 )  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑈 ) ) ) ) ) | 
						
							| 17 | 3 15 16 | sylanbrc | ⊢ ( ( 𝐹  ∈  ( 𝑇  RingHom  𝑈 )  ∧  𝐺  ∈  ( 𝑆  RingHom  𝑇 ) )  →  ( 𝐹  ∘  𝐺 )  ∈  ( 𝑆  RingHom  𝑈 ) ) |