Step |
Hyp |
Ref |
Expression |
1 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) → 𝑈 ∈ Ring ) |
2 |
|
rhmrcl1 |
⊢ ( 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) → 𝑆 ∈ Ring ) |
3 |
1 2
|
anim12ci |
⊢ ( ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → ( 𝑆 ∈ Ring ∧ 𝑈 ∈ Ring ) ) |
4 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) → 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ) |
5 |
|
rhmghm |
⊢ ( 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
6 |
|
ghmco |
⊢ ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ) |
8 |
|
eqid |
⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) |
9 |
|
eqid |
⊢ ( mulGrp ‘ 𝑈 ) = ( mulGrp ‘ 𝑈 ) |
10 |
8 9
|
rhmmhm |
⊢ ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑇 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
11 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
12 |
11 8
|
rhmmhm |
⊢ ( 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐺 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
13 |
|
mhmco |
⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑇 ) MndHom ( mulGrp ‘ 𝑈 ) ) ∧ 𝐺 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
14 |
10 12 13
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
15 |
7 14
|
jca |
⊢ ( ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) |
16 |
11 9
|
isrhm |
⊢ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 RingHom 𝑈 ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑈 ∈ Ring ) ∧ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) ) |
17 |
3 15 16
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 RingHom 𝑈 ) ) |