| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmghm | ⊢ ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 2 |  | rhmghm | ⊢ ( 𝐺  ∈  ( 𝑆  RingHom  𝑇 )  →  𝐺  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 3 |  | ghmeql | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubGrp ‘ 𝑆 ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  RingHom  𝑇 ) )  →  dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubGrp ‘ 𝑆 ) ) | 
						
							| 5 |  | eqid | ⊢ ( mulGrp ‘ 𝑆 )  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 6 |  | eqid | ⊢ ( mulGrp ‘ 𝑇 )  =  ( mulGrp ‘ 𝑇 ) | 
						
							| 7 | 5 6 | rhmmhm | ⊢ ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  →  𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) | 
						
							| 8 | 5 6 | rhmmhm | ⊢ ( 𝐺  ∈  ( 𝑆  RingHom  𝑇 )  →  𝐺  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) ) | 
						
							| 9 |  | mhmeql | ⊢ ( ( 𝐹  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) )  ∧  𝐺  ∈  ( ( mulGrp ‘ 𝑆 )  MndHom  ( mulGrp ‘ 𝑇 ) ) )  →  dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) | 
						
							| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  RingHom  𝑇 ) )  →  dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) | 
						
							| 11 |  | rhmrcl1 | ⊢ ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  →  𝑆  ∈  Ring ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  RingHom  𝑇 ) )  →  𝑆  ∈  Ring ) | 
						
							| 13 | 5 | issubrg3 | ⊢ ( 𝑆  ∈  Ring  →  ( dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubRing ‘ 𝑆 )  ↔  ( dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubGrp ‘ 𝑆 )  ∧  dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  RingHom  𝑇 ) )  →  ( dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubRing ‘ 𝑆 )  ↔  ( dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubGrp ‘ 𝑆 )  ∧  dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) ) ) | 
						
							| 15 | 4 10 14 | mpbir2and | ⊢ ( ( 𝐹  ∈  ( 𝑆  RingHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  RingHom  𝑇 ) )  →  dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubRing ‘ 𝑆 ) ) |