Step |
Hyp |
Ref |
Expression |
1 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
2 |
|
rhmghm |
⊢ ( 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
3 |
|
ghmeql |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
5 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
6 |
|
eqid |
⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) |
7 |
5 6
|
rhmmhm |
⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
8 |
5 6
|
rhmmhm |
⊢ ( 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐺 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
9 |
|
mhmeql |
⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ∧ 𝐺 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) |
10 |
7 8 9
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) |
11 |
|
rhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝑆 ∈ Ring ) |
12 |
11
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → 𝑆 ∈ Ring ) |
13 |
5
|
issubrg3 |
⊢ ( 𝑆 ∈ Ring → ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubRing ‘ 𝑆 ) ↔ ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubRing ‘ 𝑆 ) ↔ ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) ) ) |
15 |
4 10 14
|
mpbir2and |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubRing ‘ 𝑆 ) ) |