| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 2 |
|
rhmghm |
⊢ ( 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 3 |
|
ghmeql |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
| 5 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
| 6 |
|
eqid |
⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) |
| 7 |
5 6
|
rhmmhm |
⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
| 8 |
5 6
|
rhmmhm |
⊢ ( 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐺 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
| 9 |
|
mhmeql |
⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ∧ 𝐺 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) |
| 10 |
7 8 9
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) |
| 11 |
|
rhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝑆 ∈ Ring ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → 𝑆 ∈ Ring ) |
| 13 |
5
|
issubrg3 |
⊢ ( 𝑆 ∈ Ring → ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubRing ‘ 𝑆 ) ↔ ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubRing ‘ 𝑆 ) ↔ ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 15 |
4 10 14
|
mpbir2and |
⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubRing ‘ 𝑆 ) ) |