Description: A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmf.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| rhmf.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| Assertion | rhmf | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmf.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | rhmf.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 4 | 1 2 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 5 | 3 4 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |