Metamath Proof Explorer


Theorem rhmf

Description: A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses rhmf.b 𝐵 = ( Base ‘ 𝑅 )
rhmf.c 𝐶 = ( Base ‘ 𝑆 )
Assertion rhmf ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 rhmf.b 𝐵 = ( Base ‘ 𝑅 )
2 rhmf.c 𝐶 = ( Base ‘ 𝑆 )
3 rhmghm ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
4 1 2 ghmf ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 : 𝐵𝐶 )
5 3 4 syl ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : 𝐵𝐶 )