Step |
Hyp |
Ref |
Expression |
1 |
|
rhmf1o.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rhmf1o.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
3 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) |
4 |
|
rhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) |
5 |
3 4
|
jca |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝑆 ∈ Ring ∧ 𝑅 ∈ Ring ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( 𝑆 ∈ Ring ∧ 𝑅 ∈ Ring ) ) |
7 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |
8 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
10 |
1 2
|
ghmf1o |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ) ) |
11 |
10
|
bicomd |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
12 |
9 11
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
13 |
7 12
|
mpbird |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ) |
14 |
|
eqidd |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 = 𝐹 ) |
15 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
16 |
15 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
17 |
16
|
a1i |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
18 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
19 |
18 2
|
mgpbas |
⊢ 𝐶 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
20 |
19
|
a1i |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐶 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) |
21 |
14 17 20
|
f1oeq123d |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ 𝐹 : ( Base ‘ ( mulGrp ‘ 𝑅 ) ) –1-1-onto→ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) ) |
22 |
21
|
biimpa |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐹 : ( Base ‘ ( mulGrp ‘ 𝑅 ) ) –1-1-onto→ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) |
23 |
15 18
|
rhmmhm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
25 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
26 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
27 |
25 26
|
mhmf1o |
⊢ ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) → ( 𝐹 : ( Base ‘ ( mulGrp ‘ 𝑅 ) ) –1-1-onto→ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ↔ ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) ) |
28 |
27
|
bicomd |
⊢ ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) → ( ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑅 ) ) ↔ 𝐹 : ( Base ‘ ( mulGrp ‘ 𝑅 ) ) –1-1-onto→ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) ) |
29 |
24 28
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑅 ) ) ↔ 𝐹 : ( Base ‘ ( mulGrp ‘ 𝑅 ) ) –1-1-onto→ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) ) |
30 |
22 29
|
mpbird |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |
31 |
13 30
|
jca |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ∧ ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) ) |
32 |
18 15
|
isrhm |
⊢ ( ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑅 ∈ Ring ) ∧ ( ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ∧ ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) ) ) |
33 |
6 31 32
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) |
34 |
1 2
|
rhmf |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
35 |
34
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
36 |
35
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) → 𝐹 Fn 𝐵 ) |
37 |
2 1
|
rhmf |
⊢ ( ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
38 |
37
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
39 |
38
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) → ◡ 𝐹 Fn 𝐶 ) |
40 |
|
dff1o4 |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ( 𝐹 Fn 𝐵 ∧ ◡ 𝐹 Fn 𝐶 ) ) |
41 |
36 39 40
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |
42 |
33 41
|
impbida |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) ) |