Step |
Hyp |
Ref |
Expression |
1 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) |
2 |
|
subrgsubg |
⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑀 ) → 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ) |
3 |
|
ghmima |
⊢ ( ( 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ) |
5 |
|
eqid |
⊢ ( mulGrp ‘ 𝑀 ) = ( mulGrp ‘ 𝑀 ) |
6 |
|
eqid |
⊢ ( mulGrp ‘ 𝑁 ) = ( mulGrp ‘ 𝑁 ) |
7 |
5 6
|
rhmmhm |
⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ) |
8 |
5
|
subrgsubm |
⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑀 ) → 𝑋 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑀 ) ) ) |
9 |
|
mhmima |
⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑀 ) ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑁 ) ) ) |
10 |
7 8 9
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑁 ) ) ) |
11 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝑁 ∈ Ring ) |
12 |
11
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑀 ) ) → 𝑁 ∈ Ring ) |
13 |
6
|
issubrg3 |
⊢ ( 𝑁 ∈ Ring → ( ( 𝐹 “ 𝑋 ) ∈ ( SubRing ‘ 𝑁 ) ↔ ( ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ∧ ( 𝐹 “ 𝑋 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑁 ) ) ) ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑀 ) ) → ( ( 𝐹 “ 𝑋 ) ∈ ( SubRing ‘ 𝑁 ) ↔ ( ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ∧ ( 𝐹 “ 𝑋 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑁 ) ) ) ) ) |
15 |
4 10 14
|
mpbir2and |
⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubRing ‘ 𝑁 ) ) |