Metamath Proof Explorer


Theorem rhmimasubrng

Description: The homomorphic image of a subring is a subring. (Contributed by AV, 16-Feb-2025)

Ref Expression
Assertion rhmimasubrng ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( 𝐹𝑋 ) ∈ ( SubRng ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 rhmghm ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) )
2 subrngsubg ( 𝑋 ∈ ( SubRng ‘ 𝑀 ) → 𝑋 ∈ ( SubGrp ‘ 𝑀 ) )
3 ghmima ( ( 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ) → ( 𝐹𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) )
4 1 2 3 syl2an ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( 𝐹𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) )
5 eqid ( mulGrp ‘ 𝑀 ) = ( mulGrp ‘ 𝑀 )
6 eqid ( mulGrp ‘ 𝑁 ) = ( mulGrp ‘ 𝑁 )
7 5 6 rhmmhm ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) )
8 simpl ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) )
9 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
10 5 9 mgpbas ( Base ‘ 𝑀 ) = ( Base ‘ ( mulGrp ‘ 𝑀 ) )
11 10 eqcomi ( Base ‘ ( mulGrp ‘ 𝑀 ) ) = ( Base ‘ 𝑀 )
12 11 subrngss ( 𝑋 ∈ ( SubRng ‘ 𝑀 ) → 𝑋 ⊆ ( Base ‘ ( mulGrp ‘ 𝑀 ) ) )
13 12 adantl ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → 𝑋 ⊆ ( Base ‘ ( mulGrp ‘ 𝑀 ) ) )
14 eqidd ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( +g ‘ ( mulGrp ‘ 𝑀 ) ) = ( +g ‘ ( mulGrp ‘ 𝑀 ) ) )
15 eqidd ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( +g ‘ ( mulGrp ‘ 𝑁 ) ) = ( +g ‘ ( mulGrp ‘ 𝑁 ) ) )
16 eqid ( .r𝑀 ) = ( .r𝑀 )
17 5 16 mgpplusg ( .r𝑀 ) = ( +g ‘ ( mulGrp ‘ 𝑀 ) )
18 17 eqcomi ( +g ‘ ( mulGrp ‘ 𝑀 ) ) = ( .r𝑀 )
19 18 subrngmcl ( ( 𝑋 ∈ ( SubRng ‘ 𝑀 ) ∧ 𝑧𝑋𝑥𝑋 ) → ( 𝑧 ( +g ‘ ( mulGrp ‘ 𝑀 ) ) 𝑥 ) ∈ 𝑋 )
20 19 3adant1l ( ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) ∧ 𝑧𝑋𝑥𝑋 ) → ( 𝑧 ( +g ‘ ( mulGrp ‘ 𝑀 ) ) 𝑥 ) ∈ 𝑋 )
21 8 13 14 15 20 mhmimalem ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ( 𝐹𝑋 ) ∀ 𝑦 ∈ ( 𝐹𝑋 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 ) ∈ ( 𝐹𝑋 ) )
22 eqid ( .r𝑁 ) = ( .r𝑁 )
23 6 22 mgpplusg ( .r𝑁 ) = ( +g ‘ ( mulGrp ‘ 𝑁 ) )
24 23 eqcomi ( +g ‘ ( mulGrp ‘ 𝑁 ) ) = ( .r𝑁 )
25 24 oveqi ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 ) = ( 𝑥 ( .r𝑁 ) 𝑦 )
26 25 eleq1i ( ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 ) ∈ ( 𝐹𝑋 ) ↔ ( 𝑥 ( .r𝑁 ) 𝑦 ) ∈ ( 𝐹𝑋 ) )
27 26 2ralbii ( ∀ 𝑥 ∈ ( 𝐹𝑋 ) ∀ 𝑦 ∈ ( 𝐹𝑋 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 ) ∈ ( 𝐹𝑋 ) ↔ ∀ 𝑥 ∈ ( 𝐹𝑋 ) ∀ 𝑦 ∈ ( 𝐹𝑋 ) ( 𝑥 ( .r𝑁 ) 𝑦 ) ∈ ( 𝐹𝑋 ) )
28 21 27 sylib ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ( 𝐹𝑋 ) ∀ 𝑦 ∈ ( 𝐹𝑋 ) ( 𝑥 ( .r𝑁 ) 𝑦 ) ∈ ( 𝐹𝑋 ) )
29 7 28 sylan ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ( 𝐹𝑋 ) ∀ 𝑦 ∈ ( 𝐹𝑋 ) ( 𝑥 ( .r𝑁 ) 𝑦 ) ∈ ( 𝐹𝑋 ) )
30 rhmrcl2 ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝑁 ∈ Ring )
31 ringrng ( 𝑁 ∈ Ring → 𝑁 ∈ Rng )
32 30 31 syl ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝑁 ∈ Rng )
33 32 adantr ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → 𝑁 ∈ Rng )
34 eqid ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 )
35 34 22 issubrng2 ( 𝑁 ∈ Rng → ( ( 𝐹𝑋 ) ∈ ( SubRng ‘ 𝑁 ) ↔ ( ( 𝐹𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ ( 𝐹𝑋 ) ∀ 𝑦 ∈ ( 𝐹𝑋 ) ( 𝑥 ( .r𝑁 ) 𝑦 ) ∈ ( 𝐹𝑋 ) ) ) )
36 33 35 syl ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( ( 𝐹𝑋 ) ∈ ( SubRng ‘ 𝑁 ) ↔ ( ( 𝐹𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ ( 𝐹𝑋 ) ∀ 𝑦 ∈ ( 𝐹𝑋 ) ( 𝑥 ( .r𝑁 ) 𝑦 ) ∈ ( 𝐹𝑋 ) ) ) )
37 4 29 36 mpbir2and ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( 𝐹𝑋 ) ∈ ( SubRng ‘ 𝑁 ) )