Step |
Hyp |
Ref |
Expression |
1 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) |
2 |
|
subrngsubg |
⊢ ( 𝑋 ∈ ( SubRng ‘ 𝑀 ) → 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ) |
3 |
|
ghmima |
⊢ ( ( 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ) |
5 |
|
eqid |
⊢ ( mulGrp ‘ 𝑀 ) = ( mulGrp ‘ 𝑀 ) |
6 |
|
eqid |
⊢ ( mulGrp ‘ 𝑁 ) = ( mulGrp ‘ 𝑁 ) |
7 |
5 6
|
rhmmhm |
⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ) |
8 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
10 |
5 9
|
mgpbas |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ ( mulGrp ‘ 𝑀 ) ) |
11 |
10
|
eqcomi |
⊢ ( Base ‘ ( mulGrp ‘ 𝑀 ) ) = ( Base ‘ 𝑀 ) |
12 |
11
|
subrngss |
⊢ ( 𝑋 ∈ ( SubRng ‘ 𝑀 ) → 𝑋 ⊆ ( Base ‘ ( mulGrp ‘ 𝑀 ) ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → 𝑋 ⊆ ( Base ‘ ( mulGrp ‘ 𝑀 ) ) ) |
14 |
|
eqidd |
⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( +g ‘ ( mulGrp ‘ 𝑀 ) ) = ( +g ‘ ( mulGrp ‘ 𝑀 ) ) ) |
15 |
|
eqidd |
⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( +g ‘ ( mulGrp ‘ 𝑁 ) ) = ( +g ‘ ( mulGrp ‘ 𝑁 ) ) ) |
16 |
|
eqid |
⊢ ( .r ‘ 𝑀 ) = ( .r ‘ 𝑀 ) |
17 |
5 16
|
mgpplusg |
⊢ ( .r ‘ 𝑀 ) = ( +g ‘ ( mulGrp ‘ 𝑀 ) ) |
18 |
17
|
eqcomi |
⊢ ( +g ‘ ( mulGrp ‘ 𝑀 ) ) = ( .r ‘ 𝑀 ) |
19 |
18
|
subrngmcl |
⊢ ( ( 𝑋 ∈ ( SubRng ‘ 𝑀 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ( +g ‘ ( mulGrp ‘ 𝑀 ) ) 𝑥 ) ∈ 𝑋 ) |
20 |
19
|
3adant1l |
⊢ ( ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ( +g ‘ ( mulGrp ‘ 𝑀 ) ) 𝑥 ) ∈ 𝑋 ) |
21 |
8 13 14 15 20
|
mhmimalem |
⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
22 |
|
eqid |
⊢ ( .r ‘ 𝑁 ) = ( .r ‘ 𝑁 ) |
23 |
6 22
|
mgpplusg |
⊢ ( .r ‘ 𝑁 ) = ( +g ‘ ( mulGrp ‘ 𝑁 ) ) |
24 |
23
|
eqcomi |
⊢ ( +g ‘ ( mulGrp ‘ 𝑁 ) ) = ( .r ‘ 𝑁 ) |
25 |
24
|
oveqi |
⊢ ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 ) |
26 |
25
|
eleq1i |
⊢ ( ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
27 |
26
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
28 |
21 27
|
sylib |
⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑀 ) MndHom ( mulGrp ‘ 𝑁 ) ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
29 |
7 28
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
30 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝑁 ∈ Ring ) |
31 |
|
ringrng |
⊢ ( 𝑁 ∈ Ring → 𝑁 ∈ Rng ) |
32 |
30 31
|
syl |
⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝑁 ∈ Rng ) |
33 |
32
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → 𝑁 ∈ Rng ) |
34 |
|
eqid |
⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) |
35 |
34 22
|
issubrng2 |
⊢ ( 𝑁 ∈ Rng → ( ( 𝐹 “ 𝑋 ) ∈ ( SubRng ‘ 𝑁 ) ↔ ( ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) ) |
36 |
33 35
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( ( 𝐹 “ 𝑋 ) ∈ ( SubRng ‘ 𝑁 ) ↔ ( ( 𝐹 “ 𝑋 ) ∈ ( SubGrp ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) ) |
37 |
4 29 36
|
mpbir2and |
⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubRng ‘ 𝑁 ) ) |