| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringrng |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) |
| 2 |
|
ringrng |
⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ Rng ) |
| 3 |
1 2
|
anim12i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ) |
| 4 |
|
mhmismgmhm |
⊢ ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) |
| 5 |
4
|
anim2i |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) |
| 6 |
3 5
|
anim12i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) → ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 7 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
| 9 |
7 8
|
isrhm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 10 |
7 8
|
isrnghmmul |
⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 11 |
6 9 10
|
3imtr4i |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ) |