Metamath Proof Explorer


Theorem rhmmhm

Description: A ring homomorphism is a homomorphism of multiplicative monoids. (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Hypotheses isrhm.m 𝑀 = ( mulGrp ‘ 𝑅 )
isrhm.n 𝑁 = ( mulGrp ‘ 𝑆 )
Assertion rhmmhm ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) )

Proof

Step Hyp Ref Expression
1 isrhm.m 𝑀 = ( mulGrp ‘ 𝑅 )
2 isrhm.n 𝑁 = ( mulGrp ‘ 𝑆 )
3 1 2 isrhm ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) ) )
4 3 simprbi ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) )
5 4 simprd ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) )