Description: A ring homomorphism is a homomorphism of multiplicative monoids. (Contributed by Stefan O'Rear, 7-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isrhm.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
isrhm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑆 ) | ||
Assertion | rhmmhm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrhm.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
2 | isrhm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑆 ) | |
3 | 1 2 | isrhm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) ) ) |
4 | 3 | simprbi | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) ) |
5 | 4 | simprd | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) |