Step |
Hyp |
Ref |
Expression |
1 |
|
rhmmul.x |
⊢ 𝑋 = ( Base ‘ 𝑅 ) |
2 |
|
rhmmul.m |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
rhmmul.n |
⊢ × = ( .r ‘ 𝑆 ) |
4 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
6 |
4 5
|
rhmmhm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
7 |
4 1
|
mgpbas |
⊢ 𝑋 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
8 |
4 2
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
9 |
5 3
|
mgpplusg |
⊢ × = ( +g ‘ ( mulGrp ‘ 𝑆 ) ) |
10 |
7 8 9
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 · 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) × ( 𝐹 ‘ 𝐵 ) ) ) |
11 |
6 10
|
syl3an1 |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 · 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) × ( 𝐹 ‘ 𝐵 ) ) ) |