| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmply1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
rhmply1.q |
⊢ 𝑄 = ( Poly1 ‘ 𝑆 ) |
| 3 |
|
rhmply1.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
rhmply1.f |
⊢ 𝐹 = ( 𝑝 ∈ 𝐵 ↦ ( 𝐻 ∘ 𝑝 ) ) |
| 5 |
|
rhmply1.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 6 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
| 7 |
|
eqid |
⊢ ( 1o mPoly 𝑆 ) = ( 1o mPoly 𝑆 ) |
| 8 |
1 3
|
ply1bas |
⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 9 |
|
1oex |
⊢ 1o ∈ V |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → 1o ∈ V ) |
| 11 |
6 7 8 4 10 5
|
rhmmpl |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 1o mPoly 𝑅 ) RingHom ( 1o mPoly 𝑆 ) ) ) |
| 12 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) ) |
| 15 |
8
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 16 |
2 13
|
ply1bas |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ ( 1o mPoly 𝑆 ) ) |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑄 ) = ( Base ‘ ( 1o mPoly 𝑆 ) ) ) |
| 18 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 19 |
1 6 18
|
ply1plusg |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
| 20 |
19
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) |
| 21 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) ) |
| 22 |
|
eqid |
⊢ ( +g ‘ 𝑄 ) = ( +g ‘ 𝑄 ) |
| 23 |
2 7 22
|
ply1plusg |
⊢ ( +g ‘ 𝑄 ) = ( +g ‘ ( 1o mPoly 𝑆 ) ) |
| 24 |
23
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝑄 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 1o mPoly 𝑆 ) ) 𝑦 ) |
| 25 |
24
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑄 ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) ) → ( 𝑥 ( +g ‘ 𝑄 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 1o mPoly 𝑆 ) ) 𝑦 ) ) |
| 26 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 27 |
1 6 26
|
ply1mulr |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
| 28 |
27
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) |
| 29 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) ) |
| 30 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
| 31 |
2 7 30
|
ply1mulr |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ ( 1o mPoly 𝑆 ) ) |
| 32 |
31
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝑄 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 1o mPoly 𝑆 ) ) 𝑦 ) |
| 33 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑄 ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) ) → ( 𝑥 ( .r ‘ 𝑄 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 1o mPoly 𝑆 ) ) 𝑦 ) ) |
| 34 |
12 14 15 17 21 25 29 33
|
rhmpropd |
⊢ ( 𝜑 → ( 𝑃 RingHom 𝑄 ) = ( ( 1o mPoly 𝑅 ) RingHom ( 1o mPoly 𝑆 ) ) ) |
| 35 |
11 34
|
eleqtrrd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑄 ) ) |